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Abstract: In recent years, mental health monitoring has become increasingly crucial due to the 

rising awareness of mental health issues and the demand for effective interventions. In this 

field, a biosensor-assisted mental health monitoring system is an important development that 

utilizes technology to distribute real-time information on physiological reactions connected to 

psychological and emotional conditions. The study intends to increase a talent training strategy 

and a biosensor-assisted mental health monitoring system using deep learning (DL) techniques. 

This investigation contains 453 participants enrolled in talent training programs that 

incorporate problem-solving games and theoretical understanding. After the training programs, 

the data is gathered from biosensors to monitor mental health. The sensor data is preprocessed 

using bandpass filtering to eliminate noise from the obtained data. The preprocessed data 

features are extracted using a Convolutional Neural Network (CNN). This study proposed an 

innovative Refined Prairie Dog-Optimized Poly-Kernel Support Vector Machine (RPDO-

PSVM) model to predict mental health after talent training programs. RPDO optimizes the 

features selected from data, and PSVM predicts mental health. In a comparative analysis, the 

research determines the different evaluation metrics like accuracy (96%), precision (93.8%), 

recall (92.1%), and F1-score (94.4%). The conclusion indicates that the suggested method 

performs better than the forecast for monitoring mental health. The research highlights that the 

combination of advanced biosensor technology and strategic training offers a promising 

pathway for improving mental health outcomes. 

Keywords: biosensor; mental health monitoring; talent training; Refined Prairie Dog 

Optimized Poly-Kernel Support Vector Machine (RPDO-PSVM) 

1. Introduction 

A person’s mental health is a crucial component of overall welfare, which affects 

their social operation, emotional state, and psychological condition. The importance 

of mental health monitoring for preventing the provocation of mental health disorders 

and ensuring on-time responses has come to light more and more [1]. In mental health 

treatment, early diagnosis is necessary since it enables quick action and tentative 

progression of moderate symptoms into more serious problems. For diseases such as 

depression, anxiety, and psychosis, early treatment improves outcomes. Interventions 

include medication executive, psycho-education, and therapy [2]. Continuous 

monitoring makes it easier for medical providers to keep tabs on mental health changes 

and spot state changes quickly. Stress, life events, medicine, and social support are 

some of the variables that cause symptoms to change. Regular monitoring allows 

medical professionals to adjust treatment regimens and offer ongoing assistance, 

ensuring quality care [3]. Figure 1 shows the workflow for the mental health 

monitoring system. 
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Figure 1. Mental health monitoring system workflow. 

Clinical interviews, self-report questionnaires, and observational methods are 

examples of biased evaluations used in traditional mental health monitoring. These 

techniques frequently require ongoing monitoring, are automatic, and are subject to 

biases. They are controlled by accessibility and stigma, and they overlook 

modifications in mental health situations. Practical, concurrent, and objective 

monitoring solutions are provided by technological innovations like biosensor-assisted 

systems [4]. Biosensors are logical tools that use a biological constituent in 

concurrence with a physicochemical detector to quantify an existing chemical or 

biological substance. The framework of mental health monitoring determines 

physiological actions that signify mental conditions, like stress or anxiety, such as skin 

conductance, brainwave patterns, and heart rate variability [5]. Biosensors have 

benefits for tracking mental health, such as the objective dimension of physiological 

markers, non-invasive and accessible design, and concurrent, constant data collecting. 

By enabling the early diagnosis of mental health situations such as stress and anxiety, 

these sensors enhance overall mental health care by providing perceptive information 

for individualized interventions [6]. Limitations of biosensor systems for mental health 

observation include the prospect of data inaccuracy from outside sources, complexity 

in ensuring continuing user observance, and challenges in perfectly interpreting 

complex physiological signals. Widespread adoption is also hampered by privacy 

issues and the requirement for specific training to analyze sensor data [7]. 
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The study aims to create a talent training strategy and a biosensor-assisted mental 

health monitoring system using DL techniques. The study aims to leverage a Novel 

Refined Prairie Dog Optimized Poly-Kernel Support Vector Machine (RPDO-PSVM) 

model to predict mental health outcomes following a talent training program. 

Contribution of the study: 

• The study objective is to develop a talent training program and biosensor-assisted 

mental health monitoring system using the DL method. 

• The study gathers data from 453 participants through biosensors. The utilization 

of bandpass filtering to remove noise from sensor data and conventional neural 

network (CNN) to extract applicable characters for prediction tasks. 

• The study establishes the original RPDO-PSVM, which optimizes and selects 

features from sensor data to predict mental health outcomes after training 

programs. 

• The study determines the effectiveness of the RPDO-PSVM approach in 

predicting mental health outcomes, showing superior performance over other 

methods. 

• The study emphasizes the possibility of combining biosensor technology with 

tactical talent training as a talented method for improving mental health 

outcomes, providing a scalable and tailored system for mental health monitoring. 

2. Related work 

This section evaluates the utilization of biosensors and artificial intelligence (AI) 

for mental health monitoring, with approaches varying in model complexity and 

sensor integration, to predict mental health outcomes based on physiological data. 

The work optimized a system for tracking mental and physical wellness. The 

artificial fish school approach Zhang and Liu [8] introduced and tested K-means 

clustering. Findings indicate that effectiveness with advanced test samples was 

improved, with a 1% gain in classification accuracy and a shorter time for data 

completion. 

The research utilized keyboard inputs from users’ social media accounts to track 

mental health using federated culture and Deep Learning (DL) techniques [9]. A 

Recurrent Neural Network (RNN)has been evaluated to measure depression levels. By 

updating a global sentiment vocabulary with anonymized user data, the global model 

improved, and on day 60, it achieved 93.46% accuracy. 

With the reference of Singh et al. [10], depression recognition (DR) DL that 

employed Bi-Directional Long Short-Term Memory (Bi-LSTM) and CNN to 

recognize depression in signal data. By segmenting, normalizing, augmenting, and 

assembling signal data, the model categorized them into four sadness levels. DRDL 

improved results for low-performing patients by achieving 90.12% accuracy for 

quaternary classifications and 91.31% accuracy for binary classifications. 

As stated in Fei et al. [11], five databases and recognized facial expressions using 

deep quality from Alex Net and Linear Discriminant Analysis (LDA). With its 

advanced accuracy and effectiveness over advanced techniques, it has been an 

affordable and easy-to-use tool for mental health monitoring. 
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The work evaluated the posts from an online mental health platform and applied 

DL to recognize and express mental health feelings, as well as anxiety, despair, and 

obsessive-cleaning disorder (OCD). The recommended Multi-Head Attention with 

Bilinear CNN (MHA-BCNN) approach Dheeraj and Ramakrishnudu [12], outperformed 

earlier models and performed superior in identifying mental health disorders by 

handling uncertainty and long-term dependency. 

As mentioned in Liu and Wang [13], the psychological strain experienced by 

students to generate a model for identifying mental health stress using emotional 

analysis. A particular dataset was produced for learning by operate DL advance. The 

accomplishment of the advance had been maintained by comparative trials, which 

exposed that college students on the test had good mental health and refused apparent 

symbols of stress. 

An energy-efficient memristive sequencer network (EMSN) for classifying 

human emotions using two-dimensional (2D) materials and inexpensive, 

environmentally friendly technology. A core sequencer block of LSTM, 

normalization, and multi-layer perception modules was part of EMSN. The advanced 

accuracy and computational efficiency of EMSN, as established by experimental 

findings of Ji et al. [14], enhanced consumer health monitoring. 

As stated in Chakraborty et al. [15], COVID-19-exacerbated mental health 

problems in smart cities that impact a variety of populations, including healthcare 

professionals and students. Using an online platform called Mind Turner, it predicts 

mental health problems by combining image dispensation, the Internet of Technology 

(IoT), and machine learning (ML). Stress levels were detected by Random Forest (RF), 

emotions were identified by Support Vector Machine (SVM), and depression levels 

were private with a combination of results from fuzzy logic. 

A hybrid outlined method stated by Song et al. [16], for creating clinically from 

social media timelines that mutual a hierarchical Variation Auto encoder(VAE) and 

Large Language Model (LLM). It provided factual, coherent, and temporally 

susceptible outputs that surpass the therapeutic significance of the LLM-only advance 

by fusing a first-person timeline summarized with third-person clinical insights. 

According to Batterham et al. [17], the preferences of employees, clients, and 

families to build an efficient effect monitor classification for a mental health program 

for veterans of the armed services. A client-led, customized organization that provides 

improvement feedback ensures effectiveness and accessibility and permits confined 

information substitute has been essential. 

 A wearable gadget that incorporated temperature, accelerometer, and pulse 

sensors to gather data that was sent to a non-relational database. The data was analyzed 

using an ML model that used RF and linear regression (LR) to manage mental stress. 

The model developed by Jayanthi et al. [18] can be used for remote monitoring in 

everyday situations, healthcare settings, and educational institutions. 

The work combined quantum computation, and transfer learning to present a 

quantum LSTM-based contrastive learning system for incomplete mental health 

monitoring. The surpassed predictable technique by Padha and Sahoo [19], operating a 

quantum-guided LSTM encoder and fine-tuning with a tiny labeled dataset, attaining 

an F1-score of 0.99 on heart rate unpredictability data. 
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A quantum-enhanced ML model by Padha and Sahoo [20], that is effective for 

ongoing mental health monitoring. Principal component analysis (PCA) was used to 

improve data patterns, classical models were analyzed, and a meta-approach that 

integrated many quantum models was developed. The highest F1-score of 0.9 obtained 

from experiments on seven datasets outperformed that of individual models. 

The research introduced LAPoMM for tracking mental health metrics in low-

resource languages using data from social media. In identifying mental cues like 

emotions and suicidal thoughts, it performed more advanced than other techniques by 

utilizing cross-lingual methodologies and a language-agnostic approach. The model 

by Noraset et al. [21], demonstrated its prospective for worldwide mental health 

monitoring by showing a strong correlation with actual depression and suicide data. 

The work suggested Arousal-valence Networks (ArvaNets), a deep recurrent 

architecture that combined recurrent and graph convolutional neural networks 

(GCNN) attentively. To assemble emotions that were mapped to a 2D inspiration 

valence method, it extracted learnable spatial representation. The approach by Zhu et 

al. [22], effectively identified emotions and mental states for daily monitoring by 

utilizing an LSTM unit and a spatiotemporal attention mechanism. 

The CNN classification for mental health states based on signal data in a DL-

based mental health monitoring method for college students. With improvements in 

sleep problems, depression, individuality growth, suicide consideration, and self-

esteem, the approach by Du et al. [23], attained excellent classification accuracy 

(97.54%) and F1 score (98.35%). 

Adiscrepancy in private federated transfer learning architecture by Wang et al. 

[24], for mental health monitoring that addresses imbalance, insufficiency, and data 

privacy by integrating relocation education and disparity isolation. A stress 

recognition case study was used to evaluate the process, which established a 10% 

enlarge in accuracy and a 21% improvement in recall while maintaining anonymity. 

 As presented in Mazumdar et al. [25], a dataset for tracking mental health in 

metaverse settings, with a particular emphasis on post-traumatic stress disorder 

(PTSD) and escapism. It contains demographics in sequence from Twitter, chat logs, 

fundamental performance, and user-generated material. By annotating the data 

collection, mental health professionals made it possible to research mental health 

trends in virtual environments, particularly PTSD and escapism. 

Atrack design for a hierarchical absorption system used in multimodal emotional 

computing for mental health tracking. It employed an industrial albumen protein-based 

memristor, incorporated with wearable and flexible electronics. The system by Dong 

et al. [26], offered low isolation invasiveness, energy utilization, and expenditure, 

promoting next-generation healthcare equipment in smart cities. 

An IoT-enabled mental health framework by Liu [27], for individualized English 

instruction. It composed educational and mental health data to support teachers, 

evaluating a variety of data to generate customized tactics and feedback. With 

excellent accuracy (91.6%), F1-score (0.921), and MCC (0.829), the approach 

performed better than the conservative technique. 
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3. Methodology 

The study collects biosensor data from 453 participants to track mental health 

after a training program. The data is pre-processed using a bandpass filter and CNN is 

utilized for feature extraction to find pertinent patterns. By optimizing feature 

selection and efficiently managing complicated, non-linear biosensor data, the RPDO-

PSVM model advances prediction accuracy for mental health. Figure 2 shows the 

methodological flow. 

 

Figure 2. Proposed flow for mental health monitoring system and talent training strategy. 

3.1. Dataset 

The participants consisted of 453 individuals who were in talent development 

programs that integrated problem-solving games along with theoretical knowledge. 

Such participants were continuously monitored on mental health parameters using 

biosensors before and after the implementation of the talent development programs. 

These biosensors captured other physiological signals like heart rates, skin 

conductance, etc., and even brain signals. All this data collection was continuous in 

the real-time process during the training phases. The sensor data collected was then 

analyzed after completing all the training programs. The collected data reflected on 

the mental health status of the participants along with the cognitive responses. 

Calibration of biosensors was made to obtain precise readings. Physiological signals 

in the final dataset included those required to analyze the impact of the training 

program on mental health. 
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3.2. Data pre-processing  

The gathered signal data is preprocessed using a bandpass filter. It diminishes 

wavelengths outside the specified variety while permitting signals within that range to 

stream throughout. Its transfer function 𝐺(𝑒)is given by Equation (1). 

𝐺(𝑒) =
𝑒ℎ𝑖𝑔ℎ−𝑒𝑙𝑜𝑤

𝑒2+(𝑒ℎ𝑖𝑔ℎ+𝑒𝑙𝑜𝑤)
2  (1) 

where 𝑒ℎ𝑖𝑔ℎ𝑎𝑛𝑑𝑒𝑙𝑜𝑤symbolize the upper and lower cutoff frequencies, respectively; 

this filter passes frequencies between𝑒ℎ𝑖𝑔ℎ𝑎𝑛𝑑𝑒𝑙𝑜𝑤, allowing relevant signal to pass 

while blocking unnecessary noise. It isolates specific physiological signals and 

removes irrelevant noise or disturbances, improving the quality of data used for further 

analysis. 

3.3. Feature extraction  

A key component of the monitoring system for digital learning environments is 

CNN-based feature extraction. CNN is used to process the gathered data to extract 

pertinent features. 

Input layer: Raw data values from the input are handled by this layer. Improving 

pattern resolution in multi-modal data helps to shorten training times without 

sacrificing data integrity. 

Convolutional layer: A collection of adaptive filters with dimensions less than 

the input data is present in this layer. As these filters run through the input data, their 

weights are used to perform dot product operations. For example, an input with 12 

filters applied yield return attributes with dimensions of 224 ×  224 ×  12. This 

operation is represented in Equation (2) as𝑎𝑠𝑒1: 

𝑒1(𝑊) = ℎ(𝑋1 ×𝑊 + 𝐴1) (2) 

where𝐴1 and 𝑋1 stand for the biases and filter weights, respectively, and '∗' indicates 

the convolution process. 𝑋1is made up of 𝑚𝑑 filtering of size𝑒 × 𝑒 × 𝑑, where 𝑒 is the 

spatial extent of a sort and 𝑑 is the integer of avenues in the input 𝑊. 𝑋1Creates𝑚𝑑 

feature maps by applying 𝑚𝑑  convolutions to the input. Each member of the  𝑑 -

dimensional vector 𝐴1 is connected to a filter. The activation function (·), like Tanh 

or Rectified Linear Unit (ReLU), transforms the filter responses in a nonlinear way. 

Pooling layer: To reduce the dimensions of the input data to mitigate overfitting 

and improve computational efficiencies. To accomplish this reduction, every slice of 

the depth of the original data is subjected to a tiny filter. Above and below are two 

common pooling operations: max pooling is used here to choose the maximum values 

inside the filters. 

ReLU layer: Each element is given an activation function by the ReLU layer, 

which amplifies the disorder of the data patterns. The important features must be 

extracted using this nonlinearity. 

Fully connected layer: In typical neural networks, stimulation in the preceding 

layer is fully associated with all units in this level. As demonstrated in operation𝑒2, 

the activations are calculated by first performing matrix multiplication and then bias 

offset is given in Equation (3) 
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𝑒2(𝑤) = 𝑔(𝑋2𝑤 + 𝐴2) (3) 

where,𝑤 is the input value, 𝑋 represents the weight matrix, and 𝐴 is the bias value. 

Like𝑔(·) the activation function, ℎ(·)functions similarly. 

It is important since they do not require manual feature engineering; instead, they 

automatically extract hierarchical patterns from raw data. In applications like mental 

health monitoring, CNNs improve model accuracy by identifying temporal and spatial 

patterns. This allows for automatic, effective feature extraction from complex data, 

which improves performance. 

3.4. Mental health monitoring using refined prairie dog optimized poly-

kernel support vector machine (RPDO-PSVM) 

This study employs the RPDO-PSVM model to improve mental health 

monitoring. To increase prediction accuracy, the RPDO-PSVM incorporates a novel 

optimization technique that maximizes feature selection and is motivated by the social 

behavior of prairie dogs. The model efficiently handles intricate, non-linear patterns 

in biosensor data due to the PSVM component. 

3.4.1. Poly-kernel support vector machine (PSVM) 

After the feature extraction, the signal is classified using PSVM. A PSVM is a 

deviation of the SVM method that handles complex, non-linear relationships between 

data points by transforming data into a higher-dimensional space using a polynomial 

kernel function. It is used for instance, for training in a binary classification problem 

as given in Equation (4). 

(𝑦1, 𝑥1), (𝑦2, 𝑥2), … . . , (𝑦𝑚, 𝑥𝑚), 𝑦1 ∈ ℜ
𝑐 , 𝑦1 ∈ {+1,−1} (4) 

where𝑥𝑗a feature is a vector in the 𝑗𝑡ℎexample’s D-dimension space, and 𝑦𝑗is its label, 

which can be either positive or negative. PSVM is trained by minimizing the following 

Equation (5). 

𝑚𝑖𝑚: 𝑉(𝛼) =
1

2 𝑉
→.

𝑉
→+𝐷∑𝑙𝑜𝑠𝑠(

𝑉
→

𝑚

𝑗=1

𝑦𝑗, 𝑥𝑗) (5) 

The loss function shows how much training error has been lost. In most cases, 

the hinge-loss is employed. Trading off training error and margin is possible with the 

parameter 𝐷 in Equation (5). An increase in training errors results from a small value 

for𝐷. By using the following Equation (6), one can determine if an example 𝑦 belongs 

to a class(+1 or − 1). 

𝑥(𝑦) = 𝑠𝑖𝑔𝑛( ∑ 𝛼𝑗,

𝑥𝑗∈𝑆𝑉

𝑦𝑗𝐿(𝑦, 𝑦𝑗)) + 𝑎 (6) 

𝑎 represents a threshold, and 𝛼𝑗is the weight of the training example yj (αj > 0). 

The support vectors (SV) in this case should be represented byyj, which is typical of 

training samples. The kernel mapping function, or kernel function𝐿 , maps from 

ℜ
𝑐toℜ𝑐′. The dot-product is simply used by the natural linear kernel (Equation (7)). 
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𝐿(𝑦, 𝑦𝑗) = 𝑑𝑜𝑡((𝑦, 𝑦𝑗) (7) 

By using Equation (8), a polynomial kernel of degree 𝑑𝑜𝑡 is obtained. 

𝐿(𝑦, 𝑦𝑗) = (1 + 𝑑𝑜𝑡(𝑦, 𝑦𝑗))
𝑐 (8) 

For specific purposes, off-the-shelf kernel types are used or designed. It 

demonstrates that the most effective kernels for numerous natural language processing 

(NLP) difficulties are those based on polynomial kernels. It is well known that the 

most effective kernel computing is represented by the dot-product (linear form), which 

generates the output value by linearly merging all support vectors in Equation (9). 

𝑥(𝑦) = 𝑠𝑖𝑔𝑛(𝑑𝑜𝑡(𝑦, 𝑣) + 𝑎)     𝑤ℎ𝑒𝑟𝑒 𝑣 = ∑ 𝛼𝑗, 𝑥𝑗,
𝑥𝑗∈𝑆𝑉

𝑦𝑗 (9) 

By combining Equations (6) and (8), the determination of an example of 𝑥 using 

the polynomial kernel is demonstrated as follows in Equation (10). 

𝑥(𝑦) = 𝑠𝑖𝑔𝑛 (( ∑ 𝛼𝑗 ,

𝑥𝑗∈𝑆𝑉

𝑦𝑗(𝑑𝑜𝑡(𝑦, 𝑦𝑗) + 1)
𝑐)+ 𝑎 (10) 

Degree 𝑐 is typically set greater than 1. The polynomial kernel switches to a 

linear kernel when 𝑐 is set to1. Despite the polynomial kernel's efficacy, it is not 

demonstrated to linearly aggregate all support vectors into a single weight vector; 

instead, each support vector 𝑦𝑗  must have its kernel function (8) computed. When 

there are a lot of support vectors, the situation gets considerably worse. Consequently, 

the cost of kernel computations is significantly higher than that of linear kernels, 

whether in training or testing. Non-linear correlations between psychological states 

and physiological responses are analyzed by PSVM. The polynomial kernel allows the 

model to evaluate subtle patterns in biosensor data that correlate with mental health 

factors, resulting in more accurate predictions than a simple linear model. 

3.4.2. Refined prairie dog optimization (RPDO) 

The classified data are optimized using RPDO for better detection. Prairie dog 

foraging actions are simulated by the PDO algorithm. Prairie dogs participate in social 

activities such as foraging, cave construction, cave maintenance, and predator 

protection.  

At the spatial level, one × dim represents each prairie dog’s foraging activity. 

Upper-bound (UB) and lower-bound (LB) are designated to restrict the range of 

movement of prairie dogs to impede them from straying from their path during 

foraging. A difficulty can be solved by placing each prairie dog in its own set at various 

places. During the initial phase, the location of randomly synthesized prairie dogs, the 

quality of food at the moment, and the food sources 𝜌 all influenced the prairie dogs’ 

foraging behavior. A fixed food source warning at 0.1 kHz is represented by𝜌. The 

efficiency of the evaluation currently achieved the best solution that defines the quality 

of the current food in the mathematical model. As 𝑓𝐷𝐵𝑒𝑠𝑡𝑗,𝑖is the random cumulative 

effect, and𝐷𝑃𝐷𝑗,𝑖 define the position of the randomly synthesized prairie dog. This is 

the calculation by Equations (11) and (12). 
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𝑓𝐷𝐵𝑒𝑠𝑡𝑗,𝑖 = 𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 × ∆ +
𝑃𝐷𝑗,𝑖×𝑚𝑒𝑎𝑛(𝑃𝐷𝑗)

𝐺𝐵𝑒𝑠𝑡𝑗,𝑖×(𝑉𝐴𝑖−𝐾𝐴𝑖)+∆
  (11) 

𝐷𝑃𝐷𝑗,𝑖 =
𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 − 𝑞𝑃𝐷𝑗,𝑖

𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 + ∆
 (12) 

When the locations of the random solutions of prairie dogs are indicated 

by 𝐺𝐵𝑒𝑠𝑡𝑗,𝑖the global ideal solution found thus far is denoted by𝐺𝐵𝑒𝑠𝑡𝑗,𝑖and ∆ is a 

very small value showing the differences between both. Accordingly, the following 

Equation (13) can be used to update the location of prairie dogs that are looking for 

food: 

𝑃𝐷𝑗+1,𝑖+1 = 𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 − 𝑓𝐷𝐵𝑒𝑠𝑡𝑗,𝑖 × 𝜌 − 𝐶𝑃𝐷𝑗,𝑖 × 𝐿𝑒𝑣𝑦(𝑚) (13) 

Levy is a levy distribution in Equation (13) with discontinuous leaps. Prairie dogs 

dig and construct new caverns around new food sources they discover. The prairie 

dogs’ current location is correlated with the depth of their Digging Strength (DS). 

Equation (14) for DS updates is as follows: 

𝐷𝑆 = 1.5 × 𝑞 × (1 −
𝑠

𝑆
)(2

𝑠

𝑆
)
 (14) 

𝑠 is the current iteration number, 𝑆 is the maximum iteration number, and 𝑞 is 

changed between -1 and 1 based on the parity of the current iteration number. The 

position of prairie dogs is updated throughout the second period, as indicated by 

Equation (15): 

𝑃𝐷𝑗+1,𝑖+1 = 𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 × 𝑞𝑃𝐷 × 𝐷𝑆 × 𝐿𝑒𝑣𝑦(𝑚) (15) 

The quality of the available food supply 𝜀 and the total effect of all prairie dogs 

are used by the dogs to update their positions at random during the third period. Within 

the mathematical model, the food source quality is represented by a small number,𝜀 

which stands for the quality of the current food source. Using the following Equation 

(16), the position of prairie dogs can be updated: 

𝑃𝐷𝑗+1,𝑖+1 = 𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 − 𝑓𝐷𝐵𝑒𝑠𝑡𝑗,𝑖 × 𝜀 − 𝐶𝑃𝐷𝑗,𝑖 × 𝑟𝑎𝑛𝑑 (16) 

where the random number, 𝑞and, ranges from 0 to 1.  

Prairie dogs are frequently attacked by predators while they are foraging. 

Consequently, the predatory effect (PE) is used to define the predator attack. The 

following is the Equation (17) used to calculate PE: 

𝑃𝐸 = 1.5 × (1 −
𝑠

𝑆
)(2

𝑠

𝑆
)
 (17) 

Using Equation (18), update the prairie dog positions during the fourth period.  

𝑃𝐷𝑗+1,𝑖+1 = 𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 × 𝑃𝐸 × 𝑟𝑎𝑛𝑑 (18) 

Prairie dogs constantly adjust their position to find better food sources during 

these four time periods, as determined by diverse variables like the DS, the quality of 

food sources𝜀, the cumulative effect of 𝐶𝑃𝐷𝑗,𝑖 on all prairie dogs, and the PE. The 
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revised locations of prairie dogs at four different times are summed up in Equation 

(19). 

{
 
 
 

 
 
 𝑃𝐷𝑗+1,𝑖+1 = 𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 − 𝑓𝐷𝐵𝑒𝑠𝑡𝑗,𝑖 × 𝜌 − 𝐶𝑃𝐷𝑗,𝑖 × 𝐿𝑒𝑣𝑦(𝑚)∀𝑠 <

𝑆

4

𝑃𝐷𝑗+1,𝑖+1 = 𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 × 𝑞𝑃𝐷 × 𝐷𝑆 × 𝐿𝑒𝑣𝑦(𝑚)∀<
𝑆

4
≤ 𝑠

𝑆

2

𝑃𝐷𝑗+1,𝑖+1 = 𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 − 𝑓𝐷𝐵𝑒𝑠𝑡𝑗,𝑖 × 𝜀 − 𝐶𝑃𝐷𝑗,𝑖 × 𝑟𝑎𝑛𝑑∀<
𝑆

2
≤ 3

𝑆

4

𝑃𝐷𝑗+1,𝑖+1 = 𝐻𝐵𝑒𝑠𝑡𝑗,𝑖 × 𝑃𝐸 × 𝑟𝑎𝑛𝑑∀3 <
𝑆

4
≤ 𝑠𝑆

 (19) 

By maximizing feature selection and model parameters, RPDO improves 

accuracy and effectiveness when used for event detection. Event detection becomes 

more reliable and scalable as an outcome of its improved convergence speed, 

decreased processing costs, and good background adaptation. This reliable method 

makes it possible to make accurate, concurrent predictions from complex, non-linear 

biosensor data, which is necessary for evaluating mental health. 

By utilizing DL methods with biosensor data, the RPDO-PSVM model offers a 

complicated method of mental health monitoring. This system combines a PSVM that 

handles intricate, non-linear patterns with a novel optimization technique inspired by 

prairie dogs, which improves feature selection for increased prediction accuracy. By 

optimizing these retrieved traits, the RPDO algorithm keeps only the most pertinent 

data for prediction. The adaptability and resilience of the model are improved by 

RPDO, which dynamically adjusts parameters depending on patterns in training data. 

Algorithm 1 shows the RPDO-PSVM algorithm. 

Algorithm 1 Refined Prairie Dog Optimized Poly-Kernel Support Vector Machine (RPDO-PSVM) 

1: Start 

2: Step 1: Initialize data, features, and labels  

3: 𝑋, 𝑦= load data, load features 𝑥 𝑎𝑛𝑑 𝑦 

4: Step 2: Train SVM with polynomial kernel 

5: Def train PSVM (features, labels, degree = 3) 

6:                   Implement PSVM with polynomial kernel function  

7:                   Define the polynomial kernel function 

8:                   Poly kernel (𝑥, 𝑦, degree = 3): return (1 + 𝑑𝑜𝑡(𝑥, 𝑦)) degree 

9:                   Train the PSVM model with the polynomial kernel 

10:                   PSVM model = Train PSVM (features, labels, kernel = poly kernel) 

11: Step 3: Implement RPDO for parameter tuning 

12: (RPDO (PSVM model, max iteration = 100, Population size = 50) 

13:            Initialize prairie dog position and parameters 

14:      Position = Initialize position (Population size) 

15:      Best position = None 

16:      Best value = Float (‘𝑖𝑛𝑓o) 

17:      For iteration in range (Max iteration): 

18:      For 𝑗in range (Population size): 

19:      Evaluate position (fitness function) based on model accuracy 

20:      Fitness = Evaluate fitness (PSVM model, positions) 

21: Update best position and value 

22: If fitness < best value: 

23: Best value = fitness 

24: Best position = positions[𝑗] 
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Algorithm 1 (Continued) 

25: Update prairie dog positions based on RPDO logic (Equations (11)–(19)) 

26: For𝑗 in range (Population size): 

27: Position s𝑗 = update position (position s𝑗, best position) 

28: Return the best-optimized model parameters 

29: Return to the best position 

30: Step 4: Event Detection using optimized PSVM 

31:      Event detection (features, PSVM model): 

32:      Predictions = PSVM model. Predict (features) 

33:      Return predictions 

34:      Main Execution Flow features = extract features(𝑋) 
35:      PSVM model = train PSVM (features, 𝑥 𝑎𝑛𝑑 𝑦) 

36:      Optimized parameters= RPDO (PSVM model) 

37:      Final model = retrain PSVM with optimized parameters (PSVM model, optimized parameters) 

38:      Classify events using the final model 

39:      predictions = event detection (features, final model) 

40: END 

4. Result 

This study uses the RPDO-PSVM model in Python 3.11 to create a biosensor-

assisted mental health monitoring system that predicts mental health outcomes 

following talent training programs. The evaluation metrics include F1-score, accuracy, 

recall, and precision. For evaluation purposes, the existing approaches, RF (Rescio et 

al. [28]), Decision Tree (DT) (Rescio et al. [28]), and Local Binary Patterns Histogram 

(LBPH) (Alrasheedi et al. [29]), are compared to the suggested method. 

Accuracy: Accuracy is a measurement of how well the entire model performs, 

given that it computes the number of correct predictions divided by total predictions. 

It makes sure all classes have an equal representation in testing the effectiveness of 

the model. A good accuracy level will result in strong predictive power. But if the 

datasets are imbalanced, other measures like precision and recall can also be equally 

important. Accuracy is calculated by the given Equation (20). Figure 3 and Table 1 

demonstrate the outcomes of accuracy. 

𝐴𝑐𝑐 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (20) 

Table 1. Comparison of accuracy for different classification methods. 

Methods Accuracy (%) 

LBPH (Rescio et al. [28]) 68 

DT (Alrasheedi et al. [29]) 84.5 

RF (Alrasheedi et al. [29]) 91 

RPDO-PSVM [Proposed] 96 

The suggested RPDO-PSVM model outperforms LBPH (68%), RF (91%), and 

DT (84.5%) with an accuracy of 96%. This is because of the PSVM capabilities and 

sophisticated feature selection of RPDO-PSVM, which efficiently handles 

complicated data and makes it ideal for mental health prediction. 
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Figure 3. Accuracy comparison of various classification methods. 

Precision: Precision measures the accuracy of a model’s positive predictions, 

dividing true positive instances by all predicted positives, including false positives. 

Higher precision reduces false positives, especially when false positives are costly. 

It’s useful when capturing all positive instances is less important than ensuring 

positive predictions’ relevance. Table 2 and Figure 4 show the evolution of precision. 

𝑃𝑟𝑒 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (21) 

Table 2. Comparison of precision for different classification methods. 

Methods Precision (%) 

LBPH (Rescio et al. [28]) 75 

DT (Alrasheedi et al. [29]) 84.3 

RF (Alrasheedi et al. [29]) 91.5 

RPDO-PSVM [Proposed] 93.8 

 

Figure 4. Comparison of precision performance across different methods. 

The suggested RPDO-PSVM model outperforms the existing methods, with a 

precision of 93.8%, compared to 75% for LBPH, 84.3% for DT, and 91.5% for RF. 

This illustrates how RPDO-PSVM achieves greater accuracy than the other models, 

making it the best model for accurate mental health monitoring. 
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Recall is a performance metric used to measure how accurately a model can 

correctly identify positive cases. Recall is defined as the number of true positives 

divided by the sum of true positives and false negatives. The greater the recall, the 

better it is, because the model successfully detects most of the positive cases. This 

score becomes useful when there is more of a need to retrieve as many positive 

instances as possible, even at the sacrifice of some false positives. This recall is useful 

in ascertaining the sensitivity and efficiency of the model about positive results. Recall 

is calculated using Equation (22). Table 3 and Figure 5 denote the outcomes of recall. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (22) 

Table 3. Comparison of recall performance for different classification methods. 

Methods Recall (%) 

LBPH (Rescio et al. [28]) 71 

DT (Alrasheedi et al. [29]) 82.5 

RF (Alrasheedi et al. [29]) 88.5 

RPDO-PSVM [Proposed] 92.1 

 

Figure 5. Comparison of recall performance across different methods. 

With a 92.1% recall, the suggested RPDO-PSVM model outperforms the other 

methods, like DT (82.5%), RF (88.5%), and LBPH (71%),in detecting positive cases. 

This demonstrates that, in contrast to conventional techniques, RPDO-PSVM is 

efficient at producing precise, real-time forecasts about mental health. 

The F1 score is a measure of performance that combines precision and recall into 

one value. Precision is the percentage of accurate positive predictions, whereas recall 

refers to the ratio of correct identification of all positive instances. The F1-score is the 

harmonic mean between precision and recall, ensuring that there is a proper balance 

between the two. The F1 score is mostly used when there is an issue with class 

imbalance. Therefore, this score considers precision and recall to give more detailed 

performance information. It is evaluated using Equation (23). Figure 6 and Table 4 

demonstrate the evaluation of the F1-score. 
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𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (23) 

Table 4. Comparison of F1-score for different classification methods. 

Methods F1-Score (%) 

LBPH (Rescio et al. [28]) 73 

DT (Alrasheedi et al. [29]) 84.4 

RF (Alrasheedi et al. [29]) 90.9 

RPDO-PSVM [Proposed] 94.4 

 

Figure 6. F1 score performance for different methods. 

With scores of 73% for LBPH, 84.4% for DT, and 90.9% for RF, accuracy is 

becoming better. With an F1-Score of 94.4%, the RPDO-PSVM scored better than all 

other models, demonstrating its superior performance in mental health monitoring, 

making it the most accurate model in the comparison. 

Figure 7 shows the training accuracy of this study. The training accuracy graph 

illustrates how the RPDO-PSVM model’s performance improves as it processes more 

data. Initially, the accuracy is low because the model is still in the early stages of 

learning, struggling to identify patterns in the data. As optimization methods, such as 

RPDO and PSVM, are applied, the accuracy steadily increases, indicating that the 

model is becoming more proficient in making predictions. Eventually, the accuracy 

stabilizes when the model converges, signaling that the learning process has reached 

an optimal point. However, if overfitting occurs, the graph may show a steep increase 

in accuracy followed by a sudden drop, suggesting the model has become too 

specialized in the training data. Overall, the training accuracy graph reflects the 

model’s learning progress and its ability to make accurate predictions over time. 

Figure 8 demonstrates the training loss of the study. The graph of the training 

loss indicates how the error of the model reduces over time as it learns from biosensor 

data. Initially, the loss is high and indicates how much the model is misunderstood and 

needs to be optimized. As the RPDO-PSVM model goes through data processing and 

the adaptation of the parameters, loss decreases as the model performs well. This 

decline, with consistency and steadiness, is in the training loss. Hence, the model has 
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been learned well regarding the underlying pattern in the data. Since the drop in the 

loss hints at increasing the correctness of model predictions, when it declines very 

steeply, then a good sign arises as it manifests that optimization techniques applied to 

fine-tune the model have performed well. This can be summarized by saying that the 

lower value to which the training loss eventually stabilizes reflects the optimal nature 

of the model’s parameters in terms of task-specific optimality. Reductions in training 

loss are directly linked with enhanced performance in predicting mental health as the 

model becomes more competent at interpreting and classifying the biosensor data. 

 

Figure 7. Training accuracy indicating model performance. 

 

Figure 8. Training loss for model performance. 

5. Discussion  

Random Forest is good for dealing with large datasets but may overfit if the 

number of trees is not optimized, thereby reducing generalization. Decision Trees are 

simple and interpretable but easily overfit, especially in complex datasets with noisy 

or irrelevant features. LBPH, commonly used for facial recognition, relies heavily on 

pixel intensity patterns and may not work well with variations in lighting or facial 

expressions. 

The proposed RPDO-PSVM offers several improvements in overcoming these 

weaknesses. RPDO-PSVM includes the strength of SVMs combined with the 

optimized poly-kernel for improving its ability to classify points in high-dimensional 

spaces, especially when working with biosensor data. It makes use of the prairie dog 
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optimization algorithm for hyperparameter fine-tuning in the SVM to ensure that the 

model is accurate and robust, especially when handling complex biosensor 

measurements. This also improves the flexibility of the model in capturing the non-

linear relationships in biosensor data, hence more efficient for complicated 

classification tasks. Overcoming overfitting issues inherent in Random Forest and 

Decision Trees and improving beyond the pattern recognition capabilities of LBPH, 

RPDO-PSVM offers a more accurate and reliable alternative when applied to 

biosensor data. It is particularly useful in scenarios involving noisy, high-dimensional, 

or complexly patterned biosensor data where traditional models are unable to capture 

such detail. In the end, adding prairie dog optimization guarantees that this model is 

well-optimized in accuracy as well as efficiency when dealing with biosensor data. 

6. Conclusion 

Mental health monitoring is essential for quick interventions and improved 

awareness of mental health disorders. By utilizing DL methods to predict mental 

health outcomes from biosensor data, this study aimed to create a biosensor-assisted 

mental health monitoring system with the RPDO-PSVM system. The outcomes 

showed how well the system performed, which is superior to traditional techniques 

with 96% accuracy, 93.8% precision, 92.1% recall, and 94.4% F1-score. These 

outcomes demonstrated how well the RPDO-PSVM model provided accurate, 

advanced forecasts for mental health monitoring. However, limitations were noted, 

including the reliance on an exacting dataset and potential overfitting during training. 

Probable information for more scalable and flexible mental health solutions includes 

future studies on developing concurrent feedback systems for individualized mental 

health interventions, adding multimodal data for enhanced accuracy, and raising the 

dataset to enlarge model generalisability. 
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