
Molecular & Cellular Biomechanics 2025, 22(1), 841. 

https://doi.org/10.62617/mcb841 

1 

Article 

Biomechanical analysis of the effects of breathing techniques on dance 

performance and dancers’ physiological state 

Xinxin Wang 

College of Arts and Sports, Hanyang University, Seoul 04763, Korea; wangxinxin930927@163.com 

Abstract: This study aims to investigate the effects of different breathing techniques on the 

physiological state and expressive force of modern dance dancers. Here, a motion recognition 

model based on a Three-Dimensional Convolutional Neural Network (3D CNN) and a 

Transformer network is proposed to recognize dancers’ movement performance under diverse 

breathing patterns. The study employs high-frequency motion sensors and physiological 

monitoring devices, combined with questionnaires and open datasets, to collect and analyze 

the dancers’ heart rate, respiratory rate, muscle activation rate, and other data. The results show 

that under deep breathing conditions, the dancers’ heart rate reaches 0.84, significantly higher 

than shallow breathing (0.46) and general breathing (0.61). Furthermore, the muscle activation 

rate is also remarkably increased to 0.95, better than general breathing (0.73) and shallow 

breathing (0.58). The model proposed in this study has excellent performance on motion 

recognition, with an accuracy of 96.89% at 0.5 dropout, remarkably exceeding other 

comparison models. The study concludes that deep breathing can markedly improve the 

dancer’s physiological activation and performance. Moreover, the proposed model can 

accurately identify the correlation between breathing patterns and dancers’ movements, 

providing scientific support for the application of breathing techniques in dance training in the 

future. 

Keywords: modern dance; breathing techniques; motion recognition; deep learning; 

biomechanics 

1. Introduction 

Breathing techniques play an essential role in modern dance, directly affecting 

the physical expressiveness of dancers and serving as crucial support for their balance 

and coordination. In modern dance, breathing techniques are about obtaining oxygen 

and maintaining the physical energy required for movement. Moreover, they are a 

highly coordinated internal control mechanism of the body that can profoundly 

influence the fluidity, control, and expressiveness of a dancer’s movements [1,2]. In 

recent years, with the advancement of sports science and biomechanics, the role of 

breathing techniques in different athletic performances has attracted widespread 

attention from researchers. However, specific studies on the manifestation of breathing 

in dance, especially in modern dance, remain relatively limited. Therefore, conducting 

a biomechanical analysis of how breathing techniques affect dancers’ physical control, 

balance, and coordination is particularly important. 

In the relationship between breathing techniques and dance performance, the 

rhythm, depth, and control methods of breathing are all considered to have a profound 

impact on dancers’ physical stability and expressive movement. Specifically, 

breathing can help dancers maintain their center of gravity during movements, 

promoting effective coordination between different muscle groups and thus achieving 
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better physical balance [3]. The rapid transitions and complex movements in modern 

dance require dancers to maintain body balance in intricate dynamic processes. The 

correct application of breathing techniques can help dancers display fluidity more 

freely on stage. Therefore, an in-depth exploration of the biomechanical effects of 

breathing techniques on balance and coordination can provide dancers with more 

refined training bases and enhance their technical performance. 

With the development of deep learning (DL) technology, algorithms such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) 

have shown excellent performance in image recognition and time series data analysis 

[4]. The application of DL technology in dance research is gradually emerging, 

especially in motion recognition and pattern analysis. For instance, Wang et al. [5] 

studied a multimodal digital twin model based on deep transfer learning, 

demonstrating the potential advantages of integrating multimodal data in motion 

recognition analysis. DL models can automatically analyze and recognize dancers’ 

movements under various breathing patterns, identifying changes in balance and 

coordination, thereby offering more scientific data support for the optimization of 

breathing techniques. In this study, DL models are used to parse the characteristics 

and patterns of dancers during the coordination process of breathing and movement, 

bringing breakthroughs to the scientific analysis of breathing techniques. 

Consequently, this study explores the impact of breathing techniques on dancers’ 

balance and coordination through biomechanical analysis. The study employs modern 

biomechanical measurement techniques to collect dancers’ movement data and 

combine DL models to analyze the characteristics of movement performance under 

different breathing patterns. To this end, it hopes to reveal how breathing techniques 

can help dancers better control their bodies. Meanwhile, feasible breathing training 

guidelines are expected to be proposed by applying DL models in data analysis, 

providing practical advice for dancers to enhance their expressiveness. The innovation 

of this study lies in integrating DL and biomechanics, with systematic, automated data 

processing and precise experimental design. Hence, the study enables the 

quantification and visualization of the role of breathing techniques in dance 

performance, promoting the development of dance scientific research in a more 

precise direction. 

2. Recent related work 

2.1. Research progress on the effects of breathing techniques on dancers’ 

physiology and performance 

The role of breathing techniques in dancer training is widely recognized. 

Research on the impact of different breathing patterns on dancers’ physiological 

performance has begun to take shape. It reveals that breathing techniques are closely 

related to changes in heart rate, muscle tension, and nervous system activity, thereby 

laying a foundation for subsequent studies. For instance, Harbour et al. [6] integrated 

various evidence-based breathing strategies to enhance human running performance. 

The study provided athletes and dancers with scientifically grounded breathing 

techniques to optimize physiological performance. Virtanen et al. [7] explored body 
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awareness in dancers, athletes, and adults engaging in light physical activity, revealing 

the crucial role of dancers’ breathing techniques in their body control and 

expressiveness. Sun [8] emphasized the importance of breathing training in ethnic 

dance instruction, arguing that breath control could enhance dancers’ movement 

stability and elevate the artistic impact of their performances. Lopes et al. [9] studied 

breathing patterns in cycling, suggesting that the lower chest played a more significant 

role in breath control than the upper chest, offering dancers new insights to optimize 

breathing efficiency. 

In sports activities, breathing techniques have been proven to significantly 

enhance athletic performance and physiological states. For instance, Jakubovskis et al. 

[10] found that deep breathing training could help swimmers improve their endurance 

and reduce lactic acid accumulation, enhancing recovery after exercise. In addition, 

Sikora et al. [11] demonstrated that respiratory control skills significantly impacted 

the runners’ cardiorespiratory function and exercise efficiency. Especially, during 

prolonged high-intensity activities, a proper breathing rhythm could effectively delay 

the onset of fatigue. In other performing arts, breathing techniques also play a crucial 

role. For example, Wang [12] discovered that breath control in singing training 

directly affected the singer’s tone stability and pitch control ability. Through specific 

diaphragmatic breathing training, singers could better regulate their breath, enhancing 

breath support and expressiveness during performance. Furthermore, Ley [13] 

explored the breathing techniques of actors in theatrical performances. The results 

indicated that optimizing breathing rhythms could help actors maintain higher physical 

levels and emotional engagement during long monologues, thereby enhancing the 

overall fluency and impact of the performance. These studies show that the application 

of breathing techniques in various performing arts and sports not only improves 

participants’ physiological adaptability but also enhances the precision and stability of 

performance. They provide valuable insights for further understanding the relationship 

between respiration and athletic performance. Especially, in the physical art form of 

dance, the impact of breathing on dancers’ physical strength, coordination, and 

expressiveness is particularly significant. 

2.2. Biomechanical mechanisms of breathing techniques on balance and 

coordination 

In the field of modern dance, the application of deep breathing technology has 

been proven by several studies to significantly improve the expressiveness and 

physiological state of dancers [14]. For example, Răvdan [15] found that deep 

breathing in singing and dancing performances not only improved the actor’s lung 

capacity but also played a positive role in conveying emotions during the performance. 

By adjusting the rhythm of their breathing, dancers can better control muscle strength 

and physical exertion during their performances, improving the precision and fluidity 

of their performances. From a biomechanical perspective, the changes in thoracic and 

abdominal pressure during breathing play a crucial role in supporting core muscle 

groups, particularly during high-difficulty transitions. Appropriate breathing can help 

dancers stabilize their bodies and adjust their center of gravity, thus enhancing balance. 

For example, Kim et al. [16] investigated the effects of different breathing methods on 
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static balance abilities. They found that deep breathing significantly improved balance 

stability, revealing the biomechanical regulatory role of breathing in balance control. 

Grissom et al. [17] enhanced patients’ balance and coordination through remote 

healthcare’s wake-breath coordination trials, validating the importance of breathing 

training in clinical recovery and providing new insights into the study of balance 

biomechanics. Seifert et al. [18] examined the effects of breathing conditions on the 

coordination of elite Paralympic swimmers. They discovered that the focus on 

breathing influenced coordination symmetry, underscoring the core role of breathing 

in balance and movement coordination. 

2.3. Current applications of DL in dance motion analysis 

DL technology shows great potential in the recognition and analysis of dance 

movements, particularly through the successful application of CNNs and RNNs in 

image processing and time series data analysis, which offers new perspectives for 

dynamic motion recognition in the dance field. For instance, Zhang [19] optimized the 

matching of technical movements and music for ethnic dance using DL. The results 

indicated that this method significantly enhanced the fluidity and rhythmic 

coordination of dance movements, promoting the development of intelligent dance 

analysis. Parthasarathy and Palanichamy [20] generated a new video benchmark 

dataset for Indian dance gestures and applied DL for real-time gesture recognition, 

establishing a solid data foundation for the automatic identification of dance gestures. 

Jiang and Yan [21] constructed a DL framework using sensor data to generate cohesive 

dance motion models, revealing the efficient application potential of DL in dance 

motion generation and consistency analysis. 

2.4. Research gaps and the entry point of this study 

Despite the gradual recognition of the role of breathing techniques in dance, 

current research primarily focuses on the physiological support of breathing for basic 

movement performance, lacking an in-depth exploration of the specific mechanisms 

underlying balance and coordination. Additionally, existing DL technologies in dance 

motion analysis mainly address single motion recognition, and the integrated analysis 

of multi-layered movement performance characteristics remains insufficient. This 

study combines biomechanical analysis with DL models by experimentally collecting 

dance data from dancers under different breathing techniques. It investigates the 

impact of breathing techniques on balance and coordination while leveraging DL 

technology for systematic data mining. This demonstrates the dual effects of breathing 

techniques on dancers’ physiological states and expressiveness, thus offering new 

theoretical and technical support for modern dance training. 

3. Biomechanical analysis methods for breathing techniques on 

dancers’ expressiveness 

3.1. Experimental design and data collection analysis 

This study employs an experimental research design to analyze the effects of 

various breathing techniques on the balance and coordination of modern dancers. The 
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participants consist of 29 modern dancers with a certain level of dance training, aged 

between 18 and 30 years, all in good health. To ensure sample balance, participants’ 

basic information and dance experience, including years of dancing and styles 

practiced, are collected through questionnaires before the experiment. The experiment 

is set up in three groups: the deep, shallow, and general breathing groups. Each group 

is required to perform the same dance movements for a comparative analysis of their 

performance under different breathing techniques. Consent is obtained from all 

participants for this study. 

The experimental process is divided into two main stages: the training and the 

data collection. In the training stage, participants receive guidance on various 

breathing techniques to ensure they can accurately apply the learned skills during 

actual dance performances. The training content includes adjusting breathing rhythms 

and controlling the depth and frequency of breath. In the data collection stage, 

participants perform standardized dance movements, preceded by appropriate 

breathing technique exercises to ensure consistency in their breathing during the 

movements. The experiment utilizes high-frequency motion sensors and high-

definition video equipment to record dancers’ physiological indicators and motion 

trajectories while executing specific dance movements. The specific allocation of 

experimental groups is detailed in Table 1. 

Table 1. Allocation of experimental groups in a questionnaire survey. 

Groups Breathing techniques Number of participants Training content Data collection method 

The deep breathing 

group 
Deep breathing 10 

Breathing rhythm and depth 

control 

Motion sensors and camera 

equipment 

The shallow breathing 

group 
Shallow breathing 10 

Respiratory rate and rhythm 

regulation 

Motion sensors and camera 

equipment 

The general breathing 

group 
General breathing 9 

Maintaining a natural state 

without interfering with 

breathing 

Motion sensors and camera 

equipment 

Table 1 presents the allocation of experimental groups and related information 

for this study, aiming to display the participants’ training and data collection process 

under diverse breathing techniques. The experiment consists of three groups: the 

general, shallow, and deep breathing groups, each utilizing different breathing 

techniques. The number of participants varies across groups, with 10 participants in 

both the deep and shallow breathing groups, and 9 participants in the general breathing 

group. Physiological indicators such as heart rate, respiratory rate, and Surface 

Electromyography (sEMG) are measured using motion sensors and camera equipment. 

Additionally, the dancers’ performances are recorded via cameras, and subsequent 

motion recognition and analysis are conducted using image processing techniques. 

The video data can provide visual evidence of the dancers’ performance under 

different breathing techniques. The training content includes controlling breathing 

rhythm, depth, and frequency to ensure participants can accurately apply the learned 

techniques during the experiment. 

3.2. Data preprocessing analysis 

After data collection is completed, the collected original data should be 
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preprocessed to ensure the accuracy and reliability of subsequent analysis. The data 

preprocessing process is displayed in Figure 1. 

Start

Data cleaning Data correction Data 
synchronization

Data 
Annotations 

Feature 
extraction 

End

 

Figure 1. The data preprocessing process. 

In Figure 1, the first step of preprocessing is data cleaning, which involves 

removing incomplete or anomalous data points. For instance, in physiological 

monitoring, data anomalies may occur due to equipment malfunctions or 

environmental interference, and these must be identified and removed using 

predefined threshold standards. Furthermore, to ensure that the data obtained from 

motion sensors and camera equipment can be effectively utilized, algorithms are used 

to calibrate the data and eliminate noise caused by external environmental factors. 

The next critical step in preprocessing is data synchronization. Since different 

devices may have varying collection frequencies, it is necessary to align all 

physiological data with the motion trajectory data in terms of time. This process 

involves matching timestamps from different datasets, ensuring that at any given time, 

the participant’s physiological state corresponds with their motion performance. By 

employing interpolation methods and temporal resampling techniques, effective 

integration of data from different sources is achieved, laying the foundation for 

subsequent analysis. 

After data collection, the original data needs to be pre-processed to ensure the 

accuracy and reliability of subsequent analysis. The process of data preprocessing 

mainly includes three steps: noise removal, signal synchronization, and feature 

extraction. Since motion sensors and physiological monitoring devices may be 

affected by environmental noise or equipment errors during data acquisition, a low-

pass filter (LPF) is used to remove noise. The LPF can effectively remove high-

frequency noise and retain the main components of the signal. Specifically, an LPF 

with a cut-off frequency of 10Hz is selected based on Nyquist’s theorem, ensuring that 

the signal frequency is less than half of the sampling frequency. The filter function is 

shown in Equation (1): 

𝐻(𝑓) =
1

1 + (
𝑓
𝑓𝑐
)2𝑛

 
(1) 

𝐻(𝑓) and 𝑛 represent the frequency response and the order of the filter; 𝑓 refers 

to the signal frequency, which is the cut-off frequency. With this method, unwanted 
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high-frequency noise can be removed, and the active components of motor and 

physiological signals can be preserved. 

Because motion sensors and physiological monitoring devices can have different 

sampling frequencies, the signals collected by different devices need to be time-

aligned. To achieve this, a linear interpolation method is employed, which converts all 

signal data into a uniform timeline. First, it can be assumed that at moment 𝑡𝑖, the data 

of sensors 1 and 2 are 𝑥1(𝑡𝑖) and 𝑥2(𝑡𝑖). For data between time 𝑡𝑖, if the sampling 

points of sensors 1 and 2 are different, the value of one sensor is mapped to the time 

point of the other sensor using a linear interpolation equation, as follows: 

𝑥1(𝑡) = 𝑥1(𝑡𝑖) +
(𝑡 − 𝑡𝑖)

(𝑡𝑖+1 − 𝑡𝑖)
(𝑥1(𝑡𝑖+1) − 𝑥1(𝑡𝑖) (2) 

𝑡  refers to the target time point; 𝑡𝑖  and 𝑡𝑖+1  are adjacent moments of sensor 

sampling. With this approach, data from different devices can be synchronized to the 

same timescale, ensuring data consistency at the same point in time. Once the noise 

removal and signal synchronization are complete, the next step is to perform feature 

extraction. Time-domain and frequency-domain feature extraction methods are used 

to extract representative features, such as heart rate, respiratory rate, and muscle 

activation rate, from the cleaned signal. These features are essential for subsequent 

motion recognition and physiological analysis. 

Finally, data labeling and feature extraction are vital steps to ensure the accuracy 

of the analysis. The physiological data are categorized according to the participants’ 

states under diverse breathing techniques, enabling clear comparisons of performance 

between the groups in later analyses. Figure 1 illustrates the overall flow of data 

preprocessing, providing a clearer understanding of the various stages of data handling. 

3.3. Construction and analysis of dancer’s motion recognition model 

based on DL under various breathing techniques 

This study employs a DL model that integrates the Transformer network [22,23] 

and Three-Dimensional Convolutional Neural Network (3D CNN) [24], aimed at 

analyzing the impact of different breathing techniques on dancers’ performance. This 

hybrid model processes time-series data and effectively extracts spatial features, 

offering a more comprehensive understanding of the relationship between breathing 

and dance movements. Through this innovative network structure, the study can more 

accurately identify changes in dancers’ balance and coordination under different 

breathing states, providing strong support for data analysis. The architecture of the 

DL-based motion recognition model for dancers under various breathing techniques is 

depicted in Figure 2. 
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Figure 2. Architecture of the DL-based motion recognition model under different 

breathing techniques. 

In Figure 2, the model adopts a multi-layered architecture to effectively analyze 

dancers’ performance with diverse breathing techniques. First, dance data are 

collected through high-frequency motion sensors and cameras to ensure 

comprehensive motion trajectories and physiological indicators. The data 

preprocessing phase includes steps such as cleaning, synchronization, and feature 

extraction to ensure data quality and consistency. Next, the 3D CNN module, with the 

help of convolutional and pooling layers, extracts spatial and temporal features from 

the input video data, capturing subtle changes in the dancer’s movements. The 

Transformer network then enhances long-distance dependencies between features 

through a self-attention mechanism, enabling the model to more precisely understand 

the effect of breathing techniques on dance motions. Finally, the output layer classifies 

the processed features, generating performance probabilities under different breathing 

techniques to provide data support for subsequent analysis and evaluation. This 

structure enables the model to integrate diverse information comprehensively and 

explore the complex relationship between breathing and dance performance in depth. 

In this model, features are computed from the spatial and temporal dimensions to 

capture motion information in multiple consecutive frames. The value of the unit with 

the position coordinates of (x, y, z) in the jth feature diagram of the ith layer, as 

expressed in Equation (3): 

𝑉𝑖𝑗
𝑥𝑦𝑧

= 𝑓(𝑏𝑖𝑗 +∑∑ ∑ ∑ 𝜌𝑖𝑗𝑟
𝑙𝑚𝑛𝑣(𝑖−1)𝑟

(𝑥+𝑙)(𝑦+𝑚)(𝑧+𝑛)

𝑛𝑖−1

𝑛=0

𝑚𝑖−1

𝑚=0

𝑙𝑖−1

𝑙=0𝑟

) (3) 

The time dimension of the 3D convolutional kernel is ni; The weight value of the 

convolutional kernel where the position (l, m, n) is connected to the rth feature map is 

𝜌𝑖𝑗𝑟
𝑙𝑚𝑛. 𝑉𝑖𝑗

𝑥𝑦𝑧
 represents the value of the unit at position (x, y, z) of the jth feature map 

of the ith layer, where x, y, and z are the coordinates of the spatial dimension, 
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respectively. bij refers to the bias term of the jth feature map of the ith layer, which is 

used to adjust the output of the feature map.∑ ∑ ∑ ∑ ⋅
𝑛𝑖−1
𝑛=0

𝑚𝑖−1
𝑚=0

𝑙𝑖−1
𝑙=0𝑟  represents a 

quadruple sum that traverses all relevant feature maps r as well as dimensions l, m, 

and n in each direction of the convolution kernel. 𝑣(𝑖−1)𝑟
(𝑥+𝑙)(𝑦+𝑚)(𝑧+𝑛)

refers to the value 

of the unit representing the position (x + l, y + m, z + n) of the rth feature map of the 

previous layer (the i−1 layer). ni means the temporal dimension of the convolutional 

kernel in the ith layer, which is the size of the convolution kernel on the time axis. lj, 

mj, and nj are the spatial dimensions of the jth feature map, representing the size of the 

convolutional kernel in the x, y, and z directions, respectively.𝑓(⋅) refers to the ReLU 

activation function. This function can make the model’s parameters sparse, thus 

reducing overfitting. In addition, it can reduce the amount of computation on the model. 

The ReLU activation function is defined as Equation (4): 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) = {
0,  𝑥 ≤ 0
𝑥,  𝑥 > 0

 (4) 

The calculation of maximum pooling in the model reads (Equation (5)): 

𝑉𝑥,𝑦,𝑧 = 𝑚𝑎𝑥
0≤𝑖≤𝑠1,0≤𝑗≤𝑠2,0≤𝑘≤𝑠3

(𝜇𝑥⋅𝑠+𝑖,𝑦⋅𝑡+𝑗,𝑧⋅𝑟+𝑘) (5) 

  represents the 3D input vector; V denotes the output after the pooling 

operation; s, t, and r are the sampling steps in the direction. The Softmax function is 

often used in the last layer of a classification task to map an n-dimensional vector x to 

a probability distribution. Hence, the correct class probability approaches 1, the other 

probabilities approach 0, and the sum of the probabilities of all classes is 1. 

The extracted features are fed into the Transformer module. Transformer uses a 

self-attention mechanism to capture long-distance dependencies between features. The 

calculation of Attention(Q, K, V) can be written as Equation (6) : 

𝐴𝑡𝑡(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 ⋅ 𝐾𝑇

√𝑑𝑘
) ⋅ 𝑉 (6) 

Q, K, and V refer to the matrix of the “query”, “key”, and “value” vectors. 

The change of the multi-head attention mechanism is to perform an N-order linear 

mapping of the matrices Q, K, and V, which is calculated as Equations (7)–(9): 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑖 = 𝐴𝑡𝑡(𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (7) 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐴𝑡𝑡1, 𝐴𝑡𝑡2,⋯ , 𝐴𝑡𝑡𝑁) (8) 

𝑌 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑖 ⋅ 𝑊
𝑂 (9) 

𝑊𝑖
𝑄,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉 is the representation of the ith head, and finally all the heads are 

spliced together to get the final representation MultiHeadAtt . Then the linear 

transformation with the parameter WO yields Y. WO refers to the linear mapping matrix 

that fuses these N representations. The calculation of Atti is as follows Equation (10): 
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𝐴𝑡𝑡𝑖 =

(
𝑄𝑖 ⋅ 𝐾𝑖

𝑇

√𝑑𝑘
)

∑ (
𝑄𝑖 ⋅ 𝐾𝑖

𝑇

√𝑑𝑘
)𝑖

⋅ 𝑉𝑖 (10) 

Qi, Ki, and Vi represent the mapping matrices of the original input to the i-th 

subspace, respectively. 

Finally, the features processed by the Transformer are classified through the 

output layer, and the performance characteristics of dancers’ movements under 

different breathing techniques are output. The output layer uses a fully connected 

network, and the probability distribution for each breathing technique is calculated by 

the softmax function to evaluate the balance and coordination of the dancers. During 

the training of the whole model, the cross-entropy loss function 𝜍(𝑦)  is used to 

optimize the parameters, as shown in Equation (11): 

𝜍(𝑦) = −∑𝑦𝑖 𝑙𝑜𝑔(�̂�𝑖)

𝑁

𝑖=1

 (11) 

yi refers to the real label; ˆ
iy  denotes predicted probability; N represents the total 

number of samples. 

This study employs a hybrid model based on DL, combining Transformer 

networks and 3D CNN, to analyze the effects of different breathing techniques on 

dancer performance. This model can effectively process time series data and extract 

spatial features, thus gaining a more comprehensive understanding of the relationship 

between breathing techniques and dancer movements. The architecture of the motion 

recognition model based on 3D CNN and Transformer is plotted in Figure 3. 

Input layer

 (Batch_size, depth)

First convolutional layer 

(Kernel size: 3x3x3, filter: 

64)

(Activation: relu, step size: 

(1,1,1))

Maximum pooling lAyer

Window: (2,2,2)

Second convolutional layer

(Kernel size: 3x3x3, filter: 

128)

(Activation: relu,step size: 

(1,1,1))

Maximum pooling layer

Window: (2,2,2)

Third convolutional layer

(Kernel size: 3x3x3, filter: 

256)

(Activation: relu, step size: 

(1,1,1))

Maximum pooling layer

Window: (2,2,2)

Fully connected layer

(Number of neurons: 512)

(Activation: relu)

Transformer module

Output layer

(Action recognition)

 

Figure 3. Architecture of the motion recognition model based on 3D CNN and transformer. 
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The 3D CNN layers in the model consist of multiple convolutional and pooling 

layers, with specific parameter settings as follows. The shape of the input data is 

batch_size, depth, height, width, and channels. Where depth refers to the number of 

temporal frames; height and width are the spatial dimensions of each frame; channels 

represent the number of channels in the image. The first convolutional layer uses a 3 

× 3 × 3 kernel to extract local spatial and temporal features. A stride is set to (1, 1, 1), 

meaning the kernel moves with a step size of 1 in time and space dimensions. The 

number of filters is 64, and the activation function uses ReLU. This is followed by a 

max pooling layer with a pooling window and stride both set to (2, 2, 2), reducing the 

spatial dimensions of the feature maps while retaining important features. The second 

convolutional layer has the same parameters as the first, but the number of filters is 

increased to 128, and the subsequent pooling layer also performs max pooling. The 

third convolutional layer further increases the number of filters to 256, maintaining 

the same kernel size and stride. Finally, there is a fully connected layer with 512 

neurons, also using ReLU as the activation function. Through this design, the 3D CNN 

can effectively extract spatial and temporal features from time-series data, thereby 

aiding in a better understanding of the dancer’s movement performance under different 

breathing techniques. To display the structure of the model, the network architecture 

diagram shows the processing of input data, the stacking of convolutional and pooling 

layers, and the final Transformer module. The parameter settings and functions of each 

layer are detailed in the study. The choice of kernel size takes into account maintaining 

high computational efficiency while effectively extracting local spatial and temporal 

features; smaller kernels help capture finer-grained motion details. A stride of 1 

preserves a high resolution of feature maps, and pooling layers with a stride of 2 

reduces computational complexity while retaining information. As the network 

deepens, the number of filters gradually increases (from 64 to 256), aiding in the 

extraction of higher-level, more abstract features. With a rational layer design and 

parameter selection, this model can accurately recognize the nuances of a dancer’s 

movements under various breathing techniques while ensuring efficient computation, 

enhancing the accuracy of motion recognition. 

Start

Input: Dance data under different breathing states

Output: Classification of dancer action recognition results

# Data preprocessing

def preprocess_data(motion_data)

# 3D CNN module

def create_3d_cnn(input_shape):

    model = models.Sequential()

    model.add(layers.Conv3D(filters=32, kernel_size=(3, 3, 3), activation='relu', input_shape=input_shape))

    model.add(layers.MaxPooling3D(pool_size=(2, 2, 2)))

    model.add(layers.Conv3D(filters=64, kernel_size=(3, 3, 3), activation='relu'))

    model.add(layers.MaxPooling3D(pool_size=(2, 2, 2)))

    model.add(layers.Flatten())

    return model

# Transformer module

def create_transformer(features):

    # Attention mechanism

    attention_output = multi_head_attention(features)

    # Add & Layer normalization

    output = layers.LayerNormalization()(attention_output + features)

    return output

def multi_head_attention(features, num_heads=8):

    attention_heads = []

    for _ in range(num_heads):

        Q, K, V = create_qkv(features)

        attention = layers.Attention()([Q, K, V])

        attention_heads.append(attention)

    # Concatenate all heads

    concatenated_heads = layers.Concatenate()(attention_heads)

    return layers.Dense(features.shape[-1])(concatenated_heads)

# Output layer

End
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Figure 4. Pseudocode flow of motion recognition for dancers based on DL under different breathing techniques. 
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Through the application of the model algorithm, the multi-dimensional influence 

of breathing techniques on dancers’ performance can be comprehensively analyzed, 

which provides an important reference for related theories and practices. The 

pseudocode flow of this model is presented in Figure 4. 

3.4. Analysis of measurement methods of physiological and performance 

indicators 

This study also explores the measurement methods for physiological and 

performance indicators, which are crucial for evaluating dancers’ states under different 

breathing techniques. By combining physiological data (such as heart rate, respiratory 

rate, and sEMG) with performance indicators (such as balance, coordination, and 

movement fluidity), the study can comprehensively analyze the effects of breathing 

techniques on dancers’ physiology and performance. This holistic approach offers 

scientific evidence for understanding the relationship between dancers’ physiological 

responses and movement performance during a performance and provides effective 

support for optimizing dancers’ training and performances. The measurement methods 

for physiological and performance indicators are suggested in Figure 5. 

Heart rate

Respiratory 
rate

Electromyogram

Performance 
indicators

Balance

Coordination

Fluency of 
movements

Physiological 
data

Dance data

 

Figure 5. Schematic diagram of measurement methods for physiological and 

performance indicators. 

In Figure 5, the measurement methods for physiological indicators primarily 

include respiratory rate, sEMG, and heart rate. These indicators reflect the dancers’ 

physiological states under different breathing techniques. Heart rate is monitored using 

a heart rate monitor to record real-time changes in the dancer’s heart rate during 

training and performance, helping analyze the relationship with breathing techniques. 

The respiratory rate is captured through a breathing monitor, assessing the dancer’s 

breathing pattern with various breathing techniques. In addition, sEMG devices 

monitor the electrical activity of muscles, offering important data for analyzing muscle 

activation during specific movements. 

Performance indicators focus on the quality and expressiveness of the dancer’s 

movements. These indicators encompass coordination, balance, and movement 

fluidity. Motion data collected by sensors can calculate the dancer’s center of gravity 

changes and joint angles during performance, which help evaluate balance. 

Coordination is measured by analyzing the consistency of joint movements when 
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performing complex motions. Furthermore, video analysis software is utilized to 

analyze the dancer’s performance frame by frame, quantifying movement fluidity and 

evaluating performance variations under different breathing techniques. 

3.5. Experimental evaluation 

To evaluate the performance of the proposed model, the data used includes dancer 

information obtained through a questionnaire survey and the Cave Dance Dataset 

(http://cavedance.art/cave-dance-dataset.html), as illustrated in Figure 6. The 

questionnaire is designed to collect personal information, training habits, and the 

breathing techniques used by the dancers, to capture their subjective experiences and 

feedback based on different conditions. Additionally, by combining the open dance 

motion database, the study integrates a large number of dance videos and physiological 

data to enrich the sample size and enhance the representativeness of the analysis. The 

combination of these data sources provides a comprehensive perspective, making the 

analysis results more reliable. 

 

Figure 6. Dance movement collection in the cave dance dataset. 

The experimental setup ensures the effectiveness of data collection and model 

training. The experiments take place in a controlled dance studio, equipped with high-

frequency motion sensors, cameras, and physiological monitoring devices to record 

dancers’ movements and physiological states in real-time. Regarding hyperparameter 

settings, the model uses an initial learning rate of 0.001, a batch size of 32, and 50 

training epochs. To prevent overfitting, dropout techniques are applied, with dropout 

rates set at 0.2, 0.4, 0.5, 0.6, and 0.8, and the training process is adjusted accordingly. 

Dropout is a commonly used regularization technique in DL, designed to prevent 

overfitting in neural network models. Different dropout rates can have varying impacts 

on the training process and the ultimate performance of the model. According to the 

dropout algorithm proposed by Jiang et al. [25], dropout rates between 0.2 and 0.5 are 

typically common choices. A dropout rate that is too low may not effectively prevent 

overfitting, while a rate that is too high could lead to the network being unable to learn 

features effectively. Based on the research by Omar and Abd El-Hafeez [26], the 

choice of dropout rate is closely related to the scale and complexity of the network. In 

smaller networks, a lower dropout rate (such as 0.2) is often used, while in large deep 

networks, a higher dropout rate (such as 0.5 or higher) helps to improve the model’s 
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generalization ability. This study selects a range from 0.2 to 0.8 to comprehensively 

test the model’s performance under different dropout rates and to observe its impact 

on model accuracy and generalization ability. In the preliminary stage of the 

experiment, different dropout rates are set and tuned on the validation set, leading to 

the selection of a dropout rate range from 0.2 to 0.8. The experimental results reveal 

that at a lower dropout rate (such as 0.2), the model is more prone to overfitting, 

exhibiting a high training set accuracy but a relatively low validation set accuracy. At 

higher dropout rates (such as 0.5–0.8), although the model’s training accuracy 

decreases, the validation set accuracy significantly improves, enhancing the model’s 

generalization ability. Based on these preliminary experimental results, it is decided 

to adopt a dropout rate range from 0.2 to 0.8 in the final experiment to observe its 

impact on model performance and to select the optimal dropout rate. Moreover, data 

augmentation techniques are employed to expand the training samples, enhancing the 

model’s generalization ability. 

In terms of performance evaluation indicators, the proposed model algorithm is 

compared with the 3D CNNs [27], 3D ResNets [28], and the study by Jiang and Yan 

[21], using multiple assessment standards to measure model performance. Key 

indicators include accuracy and F1 score, comprehensively reflecting the model’s 

recognition performance under various breathing techniques. Furthermore, the 

biomechanical results of dancers under different breathing patterns are analyzed across 

the three groups from the questionnaire survey, encompassing heart rate, respiratory 

rate, and muscle activation rate. This study employs an experimental research design 

to analyze the impact of different breathing techniques on the physiological state and 

performance of modern dance performers. Potential confounding variables are 

controlled to ensure the reliability and validity of the experimental results. Firstly, to 

exclude the influence of time factors on the experimental outcomes, all experiments 

are conducted within the same time frame (for example, all between 2 PM and 4 PM). 

The selection of this time frame is based on physiological research findings. That is, a 

person’s physiological state can vary significantly at different times of the day. Thus, 

standardizing the experimental timing helps to minimize the interference of this factor. 

Secondly, before the experiment, all participants are required to provide records of 

their physical activities from the previous day to ensure they have not engaged in 

intense exercise or physical activity. Participants are also instructed to maintain at least 

12 h of rest to ensure their bodies are in a similar state of recovery. Furthermore, 

considering individual differences in breathing patterns, such as respiratory rate and 

tidal volume, baseline measurements are taken before the experiment to assess each 

participant’s basic physiological state and breathing patterns. Based on the individual 

differences of each participant, personalized adjustments are made to the training 

content, such as fine-tuning the duration and rhythm of deep and shallow breathing 

exercises. This ensures that each participant can undergo training and testing in an 

optimal physiological state. Through these control measures, efforts are made to 

eliminate the impact of potential confounding variables on the experimental results. 

Thus, the internal validity of the experiment can be enhanced and the reliability of the 

research findings can be improved. To further assess the model’s stability, K-fold 

cross-validation is employed to validate its performance across multiple subsets, 

ensuring its adaptability to new data. These evaluation methods provide quantitative 
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evidence to support the analysis of the impact of breathing techniques on dancers’ 

performance. 

4. Results and discussion 

4.1. Analysis of motion recognition results of dancers with different 

algorithms 

First, each algorithm’s accuracy and F1 score results at different Dropout rates 

are compared, as suggested in Figures 7 and 8. 
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Figure 7. The accuracy of dancers’ motion recognition under different algorithms. 
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Figure 8. The F1 score of dancers’ motion recognition with diverse algorithms. 

Figures 7 and 8 indicate that the proposed model algorithm outperforms existing 

comparison models in terms of accuracy and F1 score at various dropout rates. 

Specifically, with dropout rates of 0.2 and 0.4, the accuracy and F1 scores of the 

proposed algorithm reach 71.63% and 88.58%, respectively, significantly surpassing 

those of other algorithms such as Jiang and Yan [21], 3D ResNets, and 3D CNNs. 
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Notably, when the dropout rate is set to 0.5, the proposed algorithm’s performance is 

especially remarkable, achieving an accuracy of 96.89% and an F1 score of 86.23%. 

It demonstrates the model’s advantage in preventing overfitting and capturing subtle 

motion features. Additionally, at higher dropout rates (e.g., 0.8), although the 

performance of all models decreases, the proposed algorithm exhibits a relatively 

smaller drop in performance, still outperforming the other algorithms. This suggests 

that the model shows good stability in handling data uncertainty and enhancing 

generalization ability. Overall, the proposed algorithm demonstrates excellent 

advantages regarding accuracy, stability, and anti-overfitting capability. 

4.2. Analysis of biomechanical performance results of dancers under 

diverse breathing techniques 

The biomechanical performance results of dancers under three different breathing 

techniques in the deep, shallow, and general breathing groups are further analyzed, as 

revealed in Figure 9. 
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Figure 9. Biomechanical results under various breathing techniques. 

In Figure 9, the biomechanical performance of dancers varies under different 

breathing techniques. Deep breathing shows significant advantages in heart rate, 

respiratory rate, and muscle activation rate. Specifically, the heart rate for the deep 

breathing group is 0.84, much higher than the shallow and general breathing groups at 

0.46 and 0.61. It illustrates that deep breathing is more effective in enhancing the 

dancer’s physiological activation level. Additionally, the respiratory rate for the deep 

breathing group is only 0.36, lower than the general and shallow breathing groups. It 

suggests that deep breathing can more effectively control the breathing rhythm and 

help the dancer maintain a stable state. Regarding muscle activation rate, the deep 

breathing group shows a clear advantage, reaching 0.95, significantly higher than the 

shallow breathing group’s 0.58 and the general breathing group’s 0.73. This result 

indicates that deep breathing can better engage the body’s muscles, helping to improve 

the dancer’s expressiveness and control. Overall, deep breathing positively impacts 

the dancer’s physiological state and expressiveness. 

To comprehensively assess the model’s performance, a 5-fold cross-validation 

was employed, and the average accuracy, standard deviation (SD), and confidence 
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interval (CI) (95%) under different dropout rates are calculated. The cross-validation 

results are outlined in Table 2. It shows significant variations in the model’s average 

accuracy, SD, and CI under different dropout rates. Specifically, when the dropout rate 

is 0.5, the model demonstrates the best average accuracy (96.89%), with the smallest 

SD (±1.36%) and the narrowest CI ([95.18%, 98.60%]). It indicates that the model’s 

performance is the most stable and reliable under this configuration. In contrast, when 

the dropout rate is 0.2, the model has a lower accuracy (92.34%) and a larger SD, 

showing higher performance variability. As the dropout rate increases, the accuracy 

generally improves until 0.5. The dropout rate is further increased to 0.6 and 0.8, 

resulting in a slight decrease in accuracy and increased variability, reflected in larger 

SD and CI. 

Table 2. Results of cross-validation. 

Dropout rate Average accuracy (%) SD (%) CI (95%) 

0.2 92.34 ±2.05 [90.34%, 94.34%] 

0.4 94.61 ±1.89 [92.54%, 96.68%] 

0.5 96.89 ±1.36 [95.18%, 98.60%] 

0.6 94.23 ±2.02 [92.12%, 96.34%] 

0.8 90.87 ±2.34 [88.12%, 93.62%] 

To further verify the significant impact of different dropout rates on model 

performance, a one-way analysis of variance (ANOVA) is conducted, as detailed in 

Table 3. The results indicate that the dropout rate remarkably affects the model’s 

accuracy (F = 18.67, p < 0.05), suggesting that adjustments to the dropout rate 

significantly influence model performance. Specifically, a dropout rate of 0.5 is 

determined to be the optimal configuration in this study, as it ensures high accuracy 

while minimizing performance variability. 

Table 3. Results of one-way ANOVA. 

Dropout F-value p-value 

0.2 12.45 0.002 

0.4 14.32 0.001 

0.5 18.67 <0.05 

0.6 11.89 0.005 

0.8 9.76 0.01 

5. Conclusion 

This study has reached several important conclusions by analyzing the impact of 

different breathing techniques on modern dance performers’ physiological state and 

expressiveness. Particularly, it highlights the positive effects of deep breathing 

techniques on the performers’ expressions. The experimental results show that deep 

breathing not only markedly improves the dancers’ heart rate and muscle activation 

but also effectively regulates breathing rhythm, thereby enhancing the dancers’ 

expressiveness and body control. Based on these findings, it is recommended that deep 
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breathing techniques be applied at all stages of dance training, especially during warm-

up and relaxation. By engaging in 3–5 min of deep breathing exercises before and after 

training, dancers can improve oxygen supply, relax muscles, and reduce the risk of 

injury. Additionally, practicing deep breathing in conjunction with different dance 

movements can help dancers maintain a sense of rhythm and fluidity in complex 

movements, thus enhancing coordination and control. The study also indicates that 

deep breathing markedly increases muscle activation and heart rate, thus improving 

dance expressiveness. Dancers should consciously adjust their breathing rhythm and 

depth during training to ensure that deep breathing enhances the power and 

expressiveness of their movements. The effects of deep breathing vary across different 

types of dance. It is critical for modern dance, which requires high body control and 

muscle activity. Moreover, for ballet and other styles that demand softness and fluidity, 

deep breathing helps improve posture control and stability. When implementing deep 

breathing techniques, dancers should adjust their breathing rhythm and depth to avoid 

over-inhaling or exhaling, maintaining a natural and comfortable breathing state to 

avoid discomfort. Furthermore, beginners should adopt a progressive training 

approach, starting with basic deep breathing exercises and gradually increasing the 

duration and intensity to prevent physical discomfort. 

However, the study has some limitations, such as a small sample size and a single 

data source. Future work could expand the sample size and include analysis of 

breathing techniques across different dance styles and environments. Looking ahead, 

further optimization of the model structure, incorporation of multimodal data, and 

broader application scenarios contribute to advancing the in-depth research on 

breathing techniques in enhancing dance expressiveness. 
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