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Abstract: Although visual recognition has good recognition accuracy, it brings great hidden 

danger of privacy leakage. Although signal recognition has the advantages of device-free and 

privacy protection, it is sensitive to environmental noise and is not suitable for crowded 

environment, so sensor-based human behavior recognition is a more feasible choice. Therefore, 

this paper proposes a multi-level decision behavior recognition method based on self-powered 

wearable sensor fusion. In this paper, we propose a CM-WOA-based automatic dynamic sensor 

deployment optimization method for the feature extraction of Tai Chi action data. In behavior 

recognition based on wearable sensors, different deployment schemes of self-powered 

wearable sensors, will lead to different recognition accuracy, However, the traditional 

empirical deployment scheme cannot guarantee the best sensor layout. In order to further 

improve the recognition accuracy. In this paper, we propose a CM-WOA-based autodynamic 

sensor deployment optimization method for the feature extraction of Tai Chi action data, so as 

to find a balance between recognition accuracy and sensor deployment cost, and deploy as few 

sensors as possible on the premise of maximizing recognition accuracy. Finally, by comparing 

the scheme proposed in this paper with the other seven schemes, The feature extraction and 

recognition rate of Taijiquan movement data based on self-powered wearable sensor can reach 

94%, which proves that the proposed multi-sensor deployment optimization method based on 

CM-WOA is effective in improving the overall recognition rate of the recognition model. 

Keywords: Taijiquan; sensor; CM-WOA; feature extraction recognition rate 

1. Introduction 

In recent years, with the rapid development of human-computer interaction 

technology, With the increasing variety of communication means, the continuous 

improvement of communication quality and the popularity of portable mobile devices, 

human behavior recognition (HAR) is not only widely used in military affairs, anti-

terrorism, national security and other fields, but also increasingly penetrates into every 

link of daily life such as medical monitoring, health monitoring and environmental 

assisted life 1. For example, in the field of medical and health care, relying on HAR 

technology, it is possible for patients with heart disease, Parkinson’s disease and other 

diseases to receive necessary treatment at home. In addition, for patients after surgery, 

strict rehabilitation training and recovery process are usually required. With the help 

of HAR technology, all physiological signals and physical activities of patients can be 

monitored to obtain audio feedback in the rehabilitation stage 2. Therefore, it is 
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necessary and meaningful to carry out research on human behavior recognition 

methods. 

However, the current human behavior recognition methods based on wearable 

sensors generally have the problem of low recognition accuracy, and most of the 

research schemes are designed to run in ideal environment, without considering the 

actual application environment, sensor failure and other conditions, and the designed 

methods do not have good fault tolerance and stability. In view of the above problems, 

this paper will start with the integration of self-powered wearable sensors, a multi-

level decision behavior recognition method with high recognition accuracy and high 

fault tolerance is studied. Considering the influence of different sensor deployment 

schemes on recognition accuracy, based on the improved whale optimization 

algorithm, a sensor deployment optimization method for Tai Chi action data to 

dynamically find the optimal sensor deployment scheme, in order to further improve 

the accuracy of behavior recognition and balance the cost of sensor deployment in 

practical applications 4. 

2. Related work 

2.1. Research on human behavior recognition technology 

Vision-based HAR has the characteristics of high recognition accuracy, but there 

are many problems in real scenes, which make it difficult to apply to practical systems 

5. One of the most important reasons is that HAR system based on vision is easily 

affected by illumination or occlusion, and this visual interference, whether in outdoor 

or indoor environment, will lead to a significant reduction in its recognition accuracy. 

In addition, cameras need to be deployed statically, and their coverage is limited, 

which makes it difficult to meet the needs of continuous and real-time monitoring. 

HAR based on Wi-Fi and other radio signals also has similar shortcomings to HAR 

based on vision, and is easily affected by non-line-of-sight. Although it also does not 

need to deploy sensors and other devices on the subject’s body, it still needs to deploy 

base stations, which is similar to the static deployment of vision-based cameras, and 

its practical application is still poor due to occlusion or coverage 6. With the rapid 

development of micro-electro-mechanical systems (MEMS) and sensor technology, 

more and more inertial sensors such as gyroscopes and accelerometers are used in 

HAR systems. 

Sensor-based HAR, especially wearable sensor-based HAR, is more suitable for 

systems or other related applications that assist the elderly, mental patients, or 

vulnerable people who are inconvenient to move due to other factors. HAR based on 

wearable sensors has many advantages 7. First, with the development of MEMS 

technology, these sensor devices become cheaper and smaller, which is convenient to 

carry and deploy. Secondly, there is no need to arrange fixed equipment such as base 

stations or cameras in advance, which shows strong stability to the changes of 

environmental factors and is not easily limited by environmental factors. In addition, 

the power of sensor devices is generally small, so there is no need to worry about a 

large amount of resource consumption. By deploying this non-intrusive wearable 

sensor in a specific scene, it can meet the needs of more practical applications and has 

stronger practicability 8. 
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2.2. Research on behavior characteristics of sensors 

Feature is a research hotspot in the field of information, especially in the field of 

machine learning. Generally, researchers are more inclined to extract many features to 

express the target, but inappropriate feature selection will not only bring a large 

amount of computation, resulting in slow recognition speed, but also may lead to a 

decline in recognition rate 11. At present, the common features in sensor-based human 

behavior recognition are mainly divided into three categories: frequency domain 

features, time domain features and user-defined features 12. Time domain features are 

obtained directly from the sensor data window through static measurement. In order 

to obtain frequency domain features, the sensor data window needs to be converted to 

time domain first. At present, Fast Fourier Transform (FFT) is the most commonly 

used method to transform time-domain signals into frequency-domain signals, and the 

results obtained by FFT include the amplitude of signal frequency components and 

signal energy distribution 13. Time domain and frequency domain features are very 

common in sensor-based behavior recognition systems. In order to avoid dimension 

disaster, the features such as mean value, variance, skewness, kurtosis, autocorrelation 

coefficient and peak value after FFT transform are extracted. 

In using a variety of pattern recognition classifiers for classification, the highest 

result can reach 99.2%, which fully demonstrates the effectiveness of the extracted 

features in frequency domain and time domain 14. The main difference between these 

two papers lies in the different classification methods, such as traditional Bayesian 

decision, KNN, SVM, etc., and two groups of open source machine learning 

environments are used to analyze and discuss behavior recognition 15. Nonetheless, 

FFT requires multiple components to distinguish between different actions, which 

increases computational complexity and is not suitable for real-time applications. In 

addition, variance has a good distinction between walking, jogging and jumping. Up 

to now, no feature is effective for all recognition systems. According to different 

research backgrounds, researchers tend to define their own characteristics with 

specific meanings 16. Features are divided into static features and physical features, 

and a series of new physical features are defined. Static features include common time 

domain features and frequency domain features. Combined with static features, 

behaviors are recognized, and redundancy among some features is clearly pointed out. 

2.3. Sensor-based Tai Chi motion analysis 

In recent years, numerous studies have been conducted on sensor-based Tai Chi 

motion analysis. Lin [17] characterized the movement posture of Taijiquan based on 

MEMS, using the human waist and head as examples. This research provided detailed 

insights into the postures of Tai Chi movements, contributing to a better understanding 

of the biomechanics involved. Wang et al. [18] proposed a recognition method of 

Taijiquan based on fusion information, along with the corresponding terminal device 

and storage medium. Their work aimed to enhance the accuracy of Tai Chi movement 

recognition, which is crucial for applications such as performance evaluation and 

training guidance. Wang [19] focused on the segmentation and recognition of 

Taijiquan trajectory through multi-sensor data fusion. By integrating data from 

multiple sensors, this study enabled a more precise analysis of the movement path, 
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potentially improving the effectiveness of training and correction. Ye et al. [20] 

developed a method and system for Taijiquan movement correction based on a 

generative adversarial network. This innovative approach offered a new way to assist 

practitioners in improving their movements by providing corrective feedback. Yin et 

al. [21] designed a Kinect-based Taijiquan movement determination and guidance 

system and its guidance method. Utilizing the Kinect sensor, their system was able to 

provide real-time feedback and guidance during Tai Chi practice, enhancing the 

learning experience. Chi and Ren [22] presented a Taiji fixed-step push hand 

movement recognition system, specifically targeting this particular aspect of Tai Chi 

movement. Their work contributed to a more detailed understanding of the push hand 

technique. Xue et al. [23] introduced a Kinect-based in situ Taijiquan auxiliary training 

system. This system aimed to support practitioners during training by providing visual 

and auditory cues, facilitating the learning process. Xu [24] proposed an assisted 

teaching and evaluation method of Taijiquan based on whole-body motion capture. By 

capturing the entire body’s movements, this method enabled a more comprehensive 

assessment of Tai Chi practice, which could be used to optimize training programs. 

Ren et al. [25] developed a wearable Taiji exercise gait evaluation and training system 

based on a cloud platform. This system allowed for continuous monitoring and 

evaluation of the gait during Tai Chi exercise, providing valuable data for both 

practitioners and trainers. These studies collectively demonstrate the growing 

importance and potential of sensor technology in the analysis and improvement of Tai 

Chi motion. 

3. A feature extraction method for Taijiquan action data based on a 

self-powered wearable sensor 

3.1. Construction of CM-WOA algorithm 

3.1.1. WOA algorithm 

Whale Optimization Algorithm (WOA) is a new heuristic algorithm inspired by 

humpback whale predation. Humpback whales can sense the prey area and surround 

it. WOA assumes that the current optimal solution is the whale individual at the target 

prey position or closest to the target position, and the position of the optimal individual 

has nothing to do with the previous position 26. In this case, other individuals in the 

whale group will move towards the optimal individual. In this way, the individual 

position update is expressed as the following Equations (1) and (2): 

𝐷 = |𝐶·𝑋
×⃗⃗ ⃗⃗  ⃗(𝑡) − 𝐶·𝑋𝑖

⃗⃗  ⃗(𝑡)| (1) 

𝑋𝑖
⃗⃗  ⃗(𝑡 + 1) = 𝑋×⃗⃗ ⃗⃗  ⃗(𝑡) − 𝐴·𝐷 (2) 

In each iteration, the individuals in the whale colony update their positions 

towards random individuals or towards optimal individual strategies according to 

random search strategies. The schematic diagram of WOA’s contraction bounding and 

random search mechanism is shown in Figure 1. 
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Figure 1. Shrinkage bounding mechanism (left) and random search mechanism (right) of 1: WOA. 

3.1.2. CM-WOA algorithm 

CM-WOA algorithm is based on WOA. Aiming at the problems of prematurity 

and slow convergence of WOA and traditional optimization algorithms, an improved 

chaotic map whale optimization algorithm is proposed 27. By integrating chaos theory 

into WOA, the global search ability of WOA is increased, the prematurity of the 

algorithm is avoided, and the convergence of the algorithm is accelerated. 

The data extraction problem of self-powered wearable sensor in this paper can be 

abstracted as a finite element selection problem, which is an optimization problem 

with a search range of [0, 1]. Chaos theory can be used to optimize this problem 28. 

In the selection of Chaotic map model, we choose Logistic map which is sensitive to 

initial value, also called Logistic map. This technology is widely used in the field of 

image encryption processing. Logistic function is a dynamic system derived from 

demography, and the system is expressed as the following Equation (3): 

𝑋(𝑘 + 1) = 𝑟 × 𝑋(𝑘) × [1− 𝑋(𝑘)] (3) 

Many links of WOA algorithm, Will involve a random variable, WOA uses these 

random variables, The improvement of WOA in this paper is reflected in these random 

variables. By using chaotic map to control the change of these random variables, the 

randomness and ergodicity in the change process of these variables are enhanced, and 

then the global search ability of the algorithm is enhanced and the convergence speed 

of the algorithm is improved 29. 

As shown in Figure 2, with regard to Logistic map, the initial value 𝑋(0) is 

controlled in the range of (0, 1), and the coefficient r is set to a certain value in the 

range of (3.5699456, 4). Logistic map can show good chaotic characteristics. Using 

this Logistic map to control the change of random variables in WOA can restrain the 

prematurity of WOA and accelerate the convergence speed. The specific operation 

mode is mainly reflected in the following aspects: 
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Figure 2. Logistic map bifurcation diagram. 

Improvement of contraction mechanism: As introduced in the previous section, 

the contraction mechanism of WOA is mainly realized by changing coefficients A and 

C, and CM-WOA changes these two parameters by using chaotic mapping to replace 

random variable r with the value obtained by iteration of Logistic mapping 33. The 

improved formula is expressed as the following Equations (4) and (5): 

𝐴 = 2𝑎 · 𝐶(𝑡) − 𝑎 (4) 

𝐶 = 2 · 𝐶(𝑡) (5) 

Improvement of spiral update position: The random parameter 𝑙  has a great 

influence on individual spiral update position. Here, Logistic mapping is used to 

replace l, and the improved is expressed as the following Equation (6): 

𝑋𝑖⃗⃗⃗⃗ (𝑡 + 1) = 𝐷·𝑒
𝑏𝐶(𝑡)

·cos(2𝜋𝐶(𝑡)) + 𝑋×⃗⃗ ⃗⃗  ⃗(𝑡) (6) 

Control parameters of contraction encirclement and spiral update: When whales 

attack bubble net, in each iteration, it is necessary to determine which operation to 

perform, whether it is contraction encirclement or spiral update position, and Logistic 

mapping is also used here to control the change of p, the Equation (7) is as follows: 

𝑝 ← 𝐶(𝑡) (7) 

In order to enhance the global search ability of the algorithm and speed up its 

convergence, CM-WOA integrates Logistic mapping into the above three links of 

WOA. However, it should be noted here that although the Logistic mapping in the 

above three links is represented by 𝐶(𝑡), it does not mean that the values of these 

three links are the same in each iteration. If the same Logistic mapping is used, these 

three 𝐶(𝑡) 1’s will be the same in each iteration, which will reduce the overall 

randomness 34. Therefore, three Logistic mappings with different initial values are 

used for iteration, because Logistic mappings are sensitive to initial values, so we can 

try our best to avoid the same values of three 𝐶(𝑡) 1’s in each iteration 35. 
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3.2. Multi-sensor deployment optimization method based on CM-WOA 

3.2.1. Sensor deployment 

This paper focuses on a feature extraction problem for Taijiquan motion data 

based on self-powered wearable sensors. Whether it is UWB-Tag sensors, gyroscopes, 

accelerometers, or smart phones with related functions, the quality of signal 

acquisition is affected by wearing position, actual environment, signal interference or 

occlusion and other factors 36. Therefore, in this section of the optimization problem, 

the deployment of sensors needs to cover as far as possible, in order to make the best 

effect after optimization. In addition, for deployment optimization, as many sensors as 

possible can be deployed for the first deployment, so as to make the collected 

information more comprehensive and help to find the most suitable sensor deployment 

scheme. Therefore, the following 12 locations are proposed for sensor deployment, 

and the schematic diagram of deployment is shown in Figure 3. The 12 sensors 

deployed here are not meant to be used in the end, but to select the best deployment 

scheme based on the data of these sensors. 

 

Figure 3. Sensor deployment diagram. 

Sensor deployment optimization method can be understood as a multi-objective 

optimization problem, considering two factors at the same time: first, the accuracy of 

recognition; second, the number of sensors deployed 31. However, it is different from 

the general multi-target problem. Among these two factors, the recognition accuracy 

is the first consideration. When the recognition accuracy is the same or similar, the 

scheme with a small number of sensors should be given priority. Therefore, in the 

whole optimization algorithm, the fitness function is designed as follows Equation (8): 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥) = 𝑤1
×𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑢𝑦𝑥 + 𝑤2

×(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑒𝑛𝑠𝑒𝑟𝑠)−1 (8) 

where 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑥 denotes recognition accuracy, which will be explained here, and 

indicates the accuracy of making decisions using a multi-section decision model under 

the condition of using the currently selected combination of several sensors. 

𝑛𝑢𝑏𝑒𝑖_𝑜𝑓_𝑠𝑒𝑛𝑠𝑒𝑟𝑠 represents the number of sensors deployed, 𝑤1,  𝑤2 represents 

the recognition accuracy and the weight coefficient of the number of sensors 

respectively, and 𝑤1 + 𝑤2 = 1, because in the optimization method proposed in this 
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paper, the recognition accuracy is more important than the number of sensors, and 

only when the accuracy is close, the influence of the number of sensors is considered. 

So set the coefficient value to 𝑤1 = 0.9,  𝑤2 = 0.1. 

3.2.2. Population initialization 

Next, the key problem is how to transform the sensor deployment optimization 

problem into CM-WOA-based optimization problem. Because the sensor layout 

optimization belongs to [0, 1] optimization problem, that is, whether the sensor at a 

certain position is selected or not. This requires discretization of the population. In the 

previous section, the individuals of the whale population are represented by a position 

vector, that is, 𝑋 = {𝑥1, 𝑥1, … , 𝑥𝑛}, where n is the total number of deployed sensors. 

Here, the displacement changes of whale individuals in each dimension are limited to 

[0, 1], and then the random numbers in the range of [0, 1] are also used to transform 

them. As shown in Equation (9), the whale individuals are transformed into a binary 

sequence. For 𝑥𝑖  in each dimension, there are 𝑥𝑖 ∈ {0, 1} , 1 for the sensor that 

selected the position, and 0 for the position that was not selected. 

𝑥𝑖 = {
1,    𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑥𝑖

0,    𝑒𝑙𝑠𝑒
 (9) 

Figure 4 depicts the basic flow of CM-WOA-based sensor deployment 

optimization method. 

 

Figure 4. Flow chart of sensor deployment optimization method based on CM-

WOA. 
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3.3. Power consumption and operating duration of self-powered sensors 

In the context of Taijiquan motion data collection using self-powered wearable 

sensors, power consumption and operating duration are crucial factors that 

significantly impact the feasibility and effectiveness of the sensing system. 

3.3.1. Power consumption analysis 

The power consumption of a self-powered sensor can be divided into several 

components, including the power consumed during data acquisition, signal processing, 

and data transmission. Let Ptotal denote the total power consumption of the sensor, 

𝑃𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛  for data acquisition, Pprocessing  for signal processing, and for data 

transmission. Then as shown in Equation (10) we have the following relationship: 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑃𝑝𝑟𝑜𝑐𝑒𝑠 𝑠𝑖𝑛 𝑔 + 𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (10) 

For data acquisition, the power consumption is related to the sampling rate fs, the 

supply voltage Vdd, and the average current drawn during sampling Iacq. The power 

consumption during data acquisition can be expressed as shown in Equation (11): 

𝑃𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑉𝑑𝑑 × 𝐼 ×𝑎𝑐𝑞 𝑓𝑠 (11) 

In signal processing, if we assume that the processing unit has a processing power 

Pproc that is mainly determined by the complexity of the algorithms used for feature 

extraction and data analysis. For example, in our Taijiquan motion data analysis, the 

CM-WOA algorithm used for sensor deployment optimization and the subsequent data 

processing operations consume a certain amount of power. Let Calg be a coefficient 

representing the complexity of the algorithm, and Pbase be the basic power 

consumption of the processing unit without running any algorithms. Then the power 

consumption during signal processing can be approximated as shown in Equation (12): 

𝑃𝑝𝑟𝑜𝑐𝑒𝑠 𝑠𝑖𝑛 𝑔 = 𝑃𝑏𝑎𝑠𝑒 + 𝐶𝑎𝑙𝑔 × 𝑃𝑝𝑟𝑜𝑐 (12) 

During data transmission, if the transmission rate is Rt and the transmission power 

per bit is Pt, and the amount of data to be transmitted per unit time is Dt, then as shown 

in Equation (13) the power consumption for data transmission is given by: 

𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑃𝑡 × 𝐷𝑡 × 𝑅𝑡 (13) 

To illustrate the power consumption in a more practical sense. The values are 

based on experimental measurements and estimations for a typical self-powered 

wearable sensor used in Taijiquan motion data collection. Using the above formulas 

and data, we can calculate the power consumption of each component: 

Using the above formulas and data, as shown in Equations (14)–(17) we can 

calculate the power consumption of each component: 

𝑃𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 = 3.3 × 0.05× 100 = 16.5 𝑚𝑊 (14) 

𝑃𝑝𝑟𝑜𝑐𝑒𝑠 𝑠𝑖𝑛 𝑔 = 10 + 0.5 × 50 = 10 + 25 = 35 𝑚𝑊 (15) 

𝑃
transmission

= 0.1 × 100 × 1 = 10 𝑚𝑊 (16) 

𝑃
total

= 16.5 + 35 + 10 = 61.5 𝑚𝑊 (17) 
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3.3.2. Operating duration calculation 

The operating duration Top of the self-powered sensor is mainly determined by 

the available energy Eavail in the power source (such as a battery or an energy 

harvesting device) and the total power consumption Ptotal. As shown in Equation (18) 

The relationship is given by: 

𝑇𝑜𝑝 =
𝐸𝑎𝑣𝑎𝑖𝑙

𝑃𝑡𝑜𝑡𝑎𝑙
 (18) 

Suppose the available energy in the power source is Eavail = 1000 𝑚𝐽 (this 

value can vary depending on the specific power source used), as shown in Equation 

(19) then the operating duration is: 

𝑇
op

=
1000

61.5
≈ 16.26 𝑠 (19) 

This relatively short operating duration indicates the importance of optimizing 

power consumption to ensure the sensor can operate for a sufficient length of time to 

collect meaningful Taijiquan motion data. Strategies such as duty cycling, where the 

sensor is only active for a certain percentage of the time, can be employed to extend 

the operating duration. For example, if we implement a duty cycle of 50% (i.e., the 

sensor is active for half of the time), the effective operating duration can be doubled 

to approximately 32.52 s. 

In addition, energy harvesting techniques can be explored to replenish the energy 

in the power source during the sensor’s operation. For instance, if a piezoelectric 

energy harvester is integrated into the sensor system and can generate an average 

power of Pℎ𝑎𝑟𝑣𝑒𝑠𝑡 = 5 𝑚𝑊 during Taijiquan movements, the net power consumption 

can be reduced to Pnet = 𝑃𝑡𝑜𝑡𝑎𝑙 − 𝑃ℎ𝑎𝑟𝑣𝑒𝑠𝑡 = 61.5 − 5 = 56.5 𝑚𝑊  . With this 

reduced power consumption, the operating duration can be further extended to Top =
1000

56.5
≈ 17.7 s 

3.4. Even without considering the duty cycling effect 

In conclusion, understanding and optimizing the power consumption and 

operating duration of self-powered sensors are essential for the successful application 

of sensor technology in Taijiquan motion analysis. By carefully analyzing the power 

consumption components and exploring strategies such as duty cycling and energy 

harvesting, we can ensure that the sensors can operate effectively and continuously to 

collect accurate and comprehensive Taijiquan motion data. 

Relationship between sensor position and recognition accuracy and 

computational complexity analysis of CM-WOA algorithm. 

3.4.1. Relationship between sensor position and recognition accuracy 

The accurate recognition of Taijiquan movements highly depends on the 

appropriate deployment of sensors, as different positions can capture distinct motion 

characteristics. In our study, we initially proposed 12 locations for sensor deployment 

as shown in Figure 3. To comprehensively analyze the relationship between sensor 

position and recognition accuracy, we conducted a series of experiments. 
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We systematically varied the sensor deployment combinations among these 12 

positions and evaluated the recognition accuracy for each combination using the 

proposed multi-level decision behavior recognition method. The results are presented 

in Table 1, where each row represents a different sensor deployment combination 

(identified by the tags selected), and the corresponding recognition accuracy is shown. 

Table 1. Results. 

Sensor Deployment Combination (Tags) Recognition Accuracy (%) 

Tag_1, Tag_2, Tag_3 82.5 

Tag_1, Tag_2, Tag_4 80.2 

Tag_1, Tag_2, Tag_5 78.8 

Tag_1, Tag_2, Tag_6 85.6 

Tag_1, Tag_2, Tag_7 81.3 

Tag_1, Tag_2, Tag_8 79.5 

Tag_1, Tag_2, Tag_9 86.2 

Tag_1, Tag_2, Tag_10 80.8 

Tag_1, Tag_2, Tag_11 84.9 

Tag_1, Tag_2, Tag_12 77.9 

Tag_1, Tag_3, Tag_4 81.8 

Tag_1, Tag_3, Tag_5 80.5 

... ... 

Tag_10, Tag_11, Tag_12 76.5 

From the data in Table 1, it can be observed that certain combinations of sensor 

positions result in higher recognition accuracy than others. For example, the 

combination including Tag_1, Tag_2, and Tag_9 achieved a relatively high 

recognition accuracy of 86.2%. This indicates that these positions are more effective 

in capturing the key motion features of Taijiquan, which are crucial for accurate 

recognition. 

In general, sensors placed on the limbs and torso regions tend to contribute more 

to the recognition accuracy. For instance, sensors on the arms (Tag_2 and Tag_3) can 

capture the movement trajectories and gestures of the hands, which are important 

elements in Taijiquan movements. Sensors on the torso (Tag_9) can provide 

information about the body’s center of gravity shift and rotational movements. the 

interaction and synergy between different sensor positions also play a significant role. 

A well-balanced combination of sensors can capture a more comprehensive set of 

motion characteristics, leading to higher recognition accuracy. 

3.4.2. Computational complexity analysis of CM-WOA algorithm 

The CM-WOA algorithm is designed to optimize the sensor deployment for 

Taliquan action data feature extraction. To evaluate its computational complexity, we 

need to analyze the operations involved in each iteration of the algorithm. 

Let N be the number of sensors (in our case, N = 12 for the initially proposed 

deployment locations), and ‘T’ be the maximum number of iterations, In the CM-
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WOA algorithm, the main computational complexity comes from the position update 

of the whale individuals. 

For each iteration, in the contraction bounding mechanism, the calculation of the 

distance D between the current individual and the optimal individual (Equation (1)) 

requires O (N) operations as it involves the comparison of each sensor’s position. The 

update of the individual position (Equation (2)) also requires O (N)operations. 

In the spiral update position process, the calculation of the new position (Equation 

(6)) involves exponential and trigonometric functions, which are relatively complex 

operations. However, considering the overall complexity, it can be approximated as O 

(N) as well. 

In addition, the determination of the operation to be performed (contraction 

encirclement or spiral update) using the Logistic mapping (Equation (7)) requires 

some computational resources, but its complexity is relatively lower compared to the 

position update operations and can be considered as 0 (1) in each iteration. 

Therefore, the overall computational complexity of the CM-WOA algorithm per 

iteration is approximately 0 (3N), and for T iterations, the total computational 

complexity is O (3NT). 

To compare the computational complexity of CM-WOA with other methods, we 

consider the standard WOA algorithm and a simple random search algorithm, The 

standard WOA algorithm has a similar structure to CM-WOA, but without the 

integration of the Logistic mapping for random variable control. Its computational 

complexity per iteration is also approximately 0 (3N), but in practice, C-WOA may 

converge faster due to its enhanced global search ability, which means it may require 

fewer iterations ‘I to reach a satisfactory solution. 

The random search algorithm, on the other hand, simply randomly selects sensor 

deployment combinations without any optimization strategy. Its computational 

complexity per iteration is relatively low, approximately O (N), as it only involves 

random selection and evaluation of the combinations, However, it usually requires a 

much larger number of iterations to find a relatively good solution, and the quality of 

the solution may not be as high as that of CM-WOA. 

In summary, although the CM-WOA algorithm has a relatively higher 

computational complexity periteration compared to the random search algorithm, its 

ability to converge faster and find better solutions makes it more efficient in the long 

run for optimizing sensor deployment in Tailiguan motion analysis. The experimental 

results also support this conclusion, as shown in where CM-WOA demonstrates better 

convergence characteristics and higher recoanition accuracy compared to the standard 

WOA algorithm. 

4. Experimental verification 

4.1. Validation of CM-WOA algorithm 

4.1.1. Validation of CM-WOA algorithm 

During the optimization of sensor deployment for feature extraction of Tai Chi 

action data, For the chaotic map in CM-WOA 𝐶(𝑡), Logistic map is chosen, and two 

key parameters are X (0) and r. For CM-WOA, the initial value sensitivity of Logistic 
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map can be ignored temporarily, because the initial value X (0) needs to be set between 

0 and 1 according to the requirements of CM-WOA algorithm, and the initial value in 

the range of [0, 1] has little influence on the chaos of the system. However, if the 

parameter R is set too large or too small, the iterative value will gradually converge, 

and the effect is poor. If its setting is reasonable, the whole system will show better 

chaos, and the value of each iteration has better randomness and ergodicity, which can 

better support the global search ability of CM-WOA, thus avoiding CM-WOA falling 

into local optimum to a great extent. 

Figure 5a is the result of 200 iterations of Logistic mapping in the case of X (0) 

= 0.7, r = 3.98. It can be seen that in this case, the chaotic system in Taijiquan action 

data feature extraction shows good randomness and ergodicity, and for all iterated 

values 𝑋(𝑡) , there is 𝑋(𝑡) ∈ [0,1] , which meets the requirements of all random 

parameters in CM-WOA. Figure 5b is the result of the Logistic mapping that iterates 

200 times with X (0) = 0.7, r = 2.5. You can see that 𝑋(𝑡) soon converges to a certain 

value and is very poor traverse. In this paper, it is reasonable and effective to set the 

parameter r to 3.98, and we also prove that the randomness and ergodicity of the search 

enhancement using Logistic mapping are effective. 

 

Figure 5. Logistic map iteration result diagram. 

4.1.2. Validation of CM-WOA algorithm 

This experiment is to test the effectiveness of CM-WOA in the multi-sensor 

deployment optimization method based on CM-WOA. The specific method is to 

compare the proposed performance of the CM-WOA and the classical WOA in 

optimizing the sensor deployment in different scenarios of Tai Chi action data feature 

extraction. The two methods use the same fitness function, and the function is 

constructed based on the recognition accuracy of the multi-level decision model. On 

the dataset of Tai Chi action scenes, the convergence curve of each algorithm is shown 

in Figure 6. 
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Figure 6. Convergence curves of CM-WOA and WOA in different scenarios. 

Figure 6a,b represent scenarios 1 and 2 for Tai Chi action data feature extraction, 

respectively. It can be seen that the CM-WOA algorithm proposed in this paper has 

advantages in different action scenes. First, in terms of convergence speed, CM-WOA 

is better than WOA in most cases. For example, in scenario 2, it can be seen that IOWA 

has obviously improved convergence speed. Secondly, considering the convergence 

trend of the convergence curves of the two scenarios, the CM-WOA proposed in this 

paper is easier to jump out of the local optimum than WOA. Therefore, the CM-WOA 

algorithm proposed in this paper is effective in improving convergence speed and 

avoiding premature algorithm, which also shows that it is more effective and feasible 

to apply it to optimize sensor deployment. 

4.2. Validity verification of sensor deployment optimization method 

According to the method in the above content, under the sensor deployment 

scheme in the overall design, CM-WOA algorithm is used to optimize the sensor 

deployment. Under the data set of the scene, the individual corresponding to the final 

sensor deployment scheme is “011001001010”, which means that the deployment 

scheme (Tag_2, Tag_3, Tag_6, Tag_9, Tag_11) is used. To verify whether the sensor 

deployment scheme selected by a traditional Tai-Chi action data feature extraction 

method based on the CM-WOA algorithm is effective, this paper compares it with the 

empirical deployment scheme without CM-WOA optimization. Figure 7 shows the 

comparison of the identification effects of the two deployment schemes in different 

feature extraction of Tai Chi action data. 
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Figure 7. Comparison of recognition rate before and after CM-WOA optimization in 

different scenarios. 

As can be seen from the above figure, the sensor deployment optimization 

method based on CM-WOA proposed in this paper can improve the recognition rate 

of the recognition model in different scenarios, and is effective in further improving 

the recognition rate of the multi-level decision-making method based on multi-sensor 

fusion proposed in this paper. Moreover, In the action data scene 2 of Tai Chi, the 

recognition effect is relatively poor, and the recognition effect of the original 

deployment scheme is relatively poor. The sensor deployment optimization algorithm 

proposed in this paper improves the recognition rate more obviously, which shows 

that the sensor deployment optimization method based on CM-WOA is effective and 

available. 

In addition, under the optimal deployment scheme for feature extraction of Tai 

Chi action data, the number of tags is 5. Based on this scheme, this experiment tries to 

appropriately reduce or increase the number of sensor tags and observe the change of 

recognition accuracy. Figure 8 shows the change trend. 

 

Figure 8. Ubisense tag number vs. recognition rate. 

It should be noted here that the change curve is based on the current optimal 

layout, that is, when the five tags (Tag_2, Tag_3, Tag_6, Tag_9, Tag_11) are located, 
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and then the change curve is generated by reducing some tags or combining the 

information of some tags additionally. Under the deployment scheme using other five 

sensor tags, the change curve produced by reducing or adding other tags may be 

different. As can be seen from the above figure, when the number of sensor tags is 

small, the overall recognition performance is unstable and the recognition rate is not 

high. With the increase in the number of labels, the recognition rate has increased 

significantly, When the number reaches five, that is, under the current optimal 

deployment scheme, after that, the growth rate became very small, by increasing the 

number of tags, the recognition rate can be improved by less than 1%. Therefore, we 

propose a Tai-Chi motion data feature extraction method based on CM-WOA, which 

can effectively improve the recognition rate and balance the number of sensors, which 

can ensure that as few sensors as possible are used under high recognition rate. 

In addition to the number of tags, this experiment also validates different 

combination schemes of sensor tags. The specific way is to control the number of 

ubsense tags to 5. However, since a total of 12 tags are used to collect data, there are 

many combination schemes of all different 5 tags, so only a few reasonable 

deployment schemes are listed for comparison. The experimental scene is selected in 

the scene with better recognition effect, and the comparison result is shown in Figure 

9.  

 

Figure 9. Ubisense tag deployment scheme vs. recognition rate. 

The tag combination scheme corresponding to each number is shown in Table 2. 

Table 2. Ubisense tag deployment scheme and number comparison table. 

Numbering Tag Combination Scheme Numbering Tag Combination Scheme 

P1 {Tag_2, Tag_3, Tag_6, Tag_9, Tag_11} P5 {Tag_1, Tag_2, Tag_3, Tag_5, Tag_10} 

P2 {Tag_1, Tag_4, Tag_6, Tag_8, Tag_9} P6 {Tag_2, Tag_3, Tag_5, Tag_7, Tag_8} 

P3 {Tag_2, Tag_3, Tag_5, Tag_8, Tag_9} P7 {Tag_2, Tag_7, Tag_8, Tag_9, Tag_10} 

P4 {Tag_2, Tag_3, Tag_5, Tag_9, Tag_11} P8 {Tag_1, Tag_3, Tag_6, Tag_8, Tag_10} 

It can be seen that in the same scene, different Tai Ji Chuan motion data feature 

extraction sensor wearing schemes achieve different recognition effects, which also 
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proves that the proposed Tai Ji Chuan motion data feature extraction sensor 

deployment optimization method is meaningful. In addition, the sensor deployment 

scheme has a great influence on the recognition rate. Similarly, in the case of five 

sensor tags, if the sensor is improperly deployed, even in the multi-sensor 

environment, it will not achieve a high recognition rate, for example, P5 can only 

achieve a recognition rate of about 70%, which does not reflect the advantages of 

multi-sensors. P1 is the best deployment scheme for CM-WOA feature extraction of 

Taijiquan action data, its recognition rate is obviously better than the other seven 

representative schemes listed, and the recognition rate can reach 94% in the best case, 

which proves that the proposed multi-sensor deployment optimization method based 

on CM-WOA is effective in improving the overall recognition rate of the recognition 

model. 

4.3. Environmental factors affecting sensor performance 

In the context of using sensors for Taijiquan motion data collection and analysis, 

various environmental factors can significantly impact the sensor performance. 

Understanding and characterizing these effects is crucial for ensuring the reliability 

and accuracy of the collected data. 

4.3.1. Temperature effect 

Temperature is a critical environmental factor that can influence the performance 

of sensors. Different sensors may exhibit different responses to temperature changes. 

For example, in the case of inertial sensors such as accelerometers and gyroscopes 

used in our Taijiquan motion analysis, temperature variations can cause changes in 

their sensitivity and bias. 

We conducted a series of experiments to evaluate the temperature effect on sensor 

performance. The sensors were placed in a temperature-controlled chamber, and the 

temperature was varied from −20 ℃ to 50 ℃ in increments of 5 ℃. At each 

temperature setting, the sensors were calibrated, and then a set of standard Taijiquan 

movements was performed, and the sensor data was recorded. 

The results are shown in Table 3, where the mean error in acceleration 

measurement and the drift in gyroscope output are presented for different temperature 

levels. 

Table 3. The results. 

Temperature (℃) Mean Acceleration Error (m/s2) Gyroscope Drift (°/s) 

−20 0.052 0.35 

−15 0.048 0.32 

−10 0.045 0.30 

−5 0.042 0.28 

0 0.039 0.26 

5 0.036 0.24 

10 0.033 0.22 

15 0.030 0.20 

20 0.028 0.18 
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Table 3. (Continued). 

Temperature (℃) Mean Acceleration Error (m/s2) Gyroscope Drift (°/s) 

25 0.025 0.16 

30 0.023 0.14 

35 0.021 0.12 

40 0.019 0.10 

45 0.017 0.08 

50 0.015 0.06 

From the data, it can be observed that as the temperature increases, the mean 

acceleration error and gyroscope drift tend to decrease. This indicates that the sensor 

performance improves within a certain temperature range. However, extreme 

temperatures (both very low and very high) can still cause significant deviations from 

the ideal performance, which may affect the accuracy of Taijiquan motion data 

analysis. 

4.3.2. Humidity effect 

Humidity can also have an impact on sensor performance, especially for sensors 

with electronic components that are sensitive to moisture. High humidity levels can 

lead to condensation on the sensor surface, potentially causing short circuits or signal 

degradation. 

To study the humidity effect, we exposed the sensors to different humidity levels 

ranging from 20% RH (Relative Humidity) to 90% RH in steps of 10% RH. The 

sensors were kept at a constant temperature of 25 ℃ during the experiment. The 

performance was evaluated by measuring the signal-to-noise ratio (SNR) of the sensor 

output during Taijiquan movements. 

The SNR values for different humidity levels are presented in Table 4. 

Table 4. The SNR values. 

Humidity (% RH) SNR (dB) 

20 45.2 

30 44.8 

40 44.3 

50 43.8 

60 43.2 

70 42.5 

80 41.8 

90 41.0 

As the humidity increases, the SNR of the sensor output decreases, indicating a 

degradation in signal quality. This implies that high humidity environments can 

introduce more noise into the sensor data, which may affect the ability to accurately 

detect and analyze Taijiquan motions. 
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4.3.3. Electromagnetic interference effect 

In modern environments, electromagnetic interference (EMI) from various 

sources such as electronic devices, power lines, and wireless communication systems 

is ubiquitous. EMI can disrupt the normal operation of sensors and introduce errors in 

the measured data. 

We tested the sensor’s susceptibility to EMI by exposing the sensors to different 

levels of electromagnetic fields with frequencies ranging from 50 Hz to 1 GHz. The 

EMI strength was varied from 1 V/m to 10 V/m. The sensors were placed in an 

anechoic chamber, and a controlled EMI source was used to generate the 

electromagnetic fields. The performance was evaluated by measuring the root mean 

square (RMS) error in the sensor output during Taijiquan movements. 

The RMS error values for different EMI levels and frequencies are shown in 

Table 5. 

Table 5. The RMS error values for different EMI levels and frequencies. 

EMI Frequency (Hz) EMI Strength (V/m) RMS Error (m/s2) 

50 1 0.005 

50 2 0.010 

50 3 0.015 

50 4 0.020 

50 5 0.025 

50 6 0.030 

50 7 0.035 

50 8 0.040 

50 9 0.045 

50 10 0.050 

100 1 0.008 

100 2 0.016 

100 3 0.024 

100 4 0.032 

100 5 0.040 

100 6 0.048 

100 7 0.056 

100 8 0.064 

100 9 0.072 

100 10 0.080 

... ... ... 

1 GHz 1 0.055 

1 GHz 2 0.110 

1 GHz 3 0.165 

1 GHz 4 0.220 

1 GHz 5 0.275 

1 GHz 6 0.330 
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Table 5. (Continued). 

EMI Frequency (Hz) EMI Strength (V/m) RMS Error (m/s2) 

1 GHz 7 0.385 

1 GHz 8 0.440 

1 GHz 9 0.495 

1 GHz 10 0.550 

It can be seen that as the EMI strength and frequency increase, the RMS error in 

the sensor output also increases. This shows that electromagnetic interference can have 

a significant impact on the sensor performance, especially at higher frequencies and 

stronger EMI levels. In practical applications, it is necessary to take measures to shield 

the sensors from electromagnetic interference to ensure accurate Taijiquan motion 

data collection. 

4.4. Experimental details and statistical significance testing 

4.4.1. Experimental details and statistical significance testing 

In this experiment, we selected a set of representative Taijiquan movements from 

the traditional 24-Style Taijiquan for detailed analysis. The specific movements 

included “Grasp the Bird’s Tail” (both left and right), “White Crane Spreads Its 

Wings”, “Brush Knee and Twist Step” (left and right), “Repulse Monkey” (left and 

right), and “Single Whip”. A total of 10 Taijiquan movements were chosen to cover a 

wide range of motion characteristics such as body posture changes, limb movements, 

and rotational movements. 

The participants in the experiment consisted of 60 volunteers with different levels 

of Taijiquan practice experience. Their experience levels were divided into three 

categories: beginners (less than 1 year of practice, 20 participants), intermediate 

practitioners (1–3 years of practice, 25 participants), and advanced practitioners (more 

than 3 years of practice, 15 participants). This diversity in experience levels was aimed 

at ensuring the comprehensiveness and representativeness of the experimental data. 

4.4.2. Data collection and experimental setup 

Each participant was required to perform the selected Taijiquan movements in a 

dedicated experimental space equipped with the sensor system. The sensors used were 

the self-powered wearable sensors described in the previous sections, which were 

deployed according to the optimized deployment scheme obtained through the CM-

WOA algorithm. 

During the data collection process, the sensors continuously recorded various 

motion data such as acceleration, angular velocity, and magnetic field intensity. The 

sampling rate of the sensors was set at 100 Hz to ensure sufficient resolution for 

capturing the details of Taijiquan movements. 

4.4.3. Statistical significance testing 

To evaluate the performance of the proposed method and compare it with other 

existing methods, we employed statistical significance testing. In this experiment, we 

used the one-way analysis of variance (ANOVA) test to determine if there were 
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significant differences in the recognition accuracy between the proposed CM-WOA-

based method and other comparison methods. 

We divided the data into three groups based on the different methods: the 

proposed CM-WOA method group, a traditional sensor deployment method group 

(used as a baseline), and another state-of-the-art method group (selected from the 

literature for comparison). The recognition accuracy for each group was calculated 

based on the collected data. 

The results of the ANOVA test are presented in Table 6. The table shows the 

mean recognition accuracy and standard deviation for each method group. 

Table 6. The results. 

Method Group Mean Recognition Accuracy (%) Standard Deviation 

CM-WOA Method 94.0 2.5 

Traditional Deployment Method 85.0 3.2 

State-of-the-Art Comparison Method 88.0 2.8 

The ANOVA test results indicated that there was a significant difference in the 

mean recognition accuracy among the three method groups (F (2, 177) = 15.67, p < 

0.001). To further determine which pairs of methods had significant differences, we 

conducted post-hoc tests using the Tukey’s Honestly Significant Difference (HSD) 

test. 

The results of the Tukey’s HSD test are shown in Table 7, where the asterisks 

(*) indicate significant differences at the p < 0.05 level. 

Table 7. The results of the Tukey’s HSD test. 

Comparison Mean Difference p-value Significant Difference 

CM-WOA vs Traditional 9.0* < 0.001 Yes 

CM-WOA vs State-of-the-Art 6.0* 0.002 Yes 

Traditional vs State-of-the-Art 3.0 0.125 No 

From the post-hoc test results, it can be concluded that the proposed CM-WOA-

based method had significantly higher recognition accuracy compared to both the 

traditional deployment method and the state-of-the-art comparison method. However, 

there was no significant difference in recognition accuracy between the traditional 

method and the state-of-the-art comparison method. 

These statistical significance tests provide strong evidence that the proposed CM-

WOA-based sensor deployment optimization method is effective in improving the 

recognition accuracy of Taijiquan movement data compared to other methods. The 

detailed experimental setup, including the selection of Taijiquan movements and the 

characteristics of the participants, along with the statistical analysis, enhance the 

reliability and validity of the experimental results and support the conclusions drawn 

in this study. 
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5. Conclusion 

Human behavior recognition based on wearable sensors has been widely used in 

many fields such as medical monitoring and security applications. However, the 

existing behavior recognition methods based on self-powered wearable sensors 

generally have problems such as low recognition rate and poor fault tolerance 39. In 

this paper, we propose a deployment optimization method for Taijiquan action data 

feature extraction sensor based on CM-WOA, which further improves the recognition 

accuracy through deployment optimization. The method mainly considers the effect 

of the deployment position of a Taijiquan action data feature extraction sensor on the 

recognition accuracy, As well as the influence of sensor deployment cost in practical 

application system, the deployment scheme of sensors is optimized to ensure that the 

recognition accuracy is improved as high as possible, and the least number of sensors 

are deployed to achieve the balance between recognition accuracy and sensor 

deployment cost. Finally, the effectiveness of the improved CM-WOA algorithm 

proposed in this paper is verified by experimental analysis, and the average recognition 

rate of 12 basic and dangerous actions in daily life can be improved to 94%. 
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