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Abstract: This study focuses on the optimization of electric vehicle delivery routes for multiple 

distribution centers, proposing a dynamic route optimization model based on an improved Plant 

Growth Simulation Algorithm (PGSA). Inspired by the growth mechanisms of plants in nature, 

PGSA simulates the growth behavior of plants under light and resource distribution. According 

to the knowledge of molecular and cellular biomechanics, the growth process of plants can be 

seen as a series of mechanical and biological responses. By simulating this growth behavior, 

PGSA optimizes path selection through phototropism and resource acquisition, providing 

novel insights for the design of electric vehicle delivery routes. This paper enhances PGSA by 

introducing a variable step-size search mechanism, simulating the pattern of plant branches 

growing from long to short, gradually narrowing the search scope to improve search efficiency. 

Simultaneously, it randomly rearranges auxin concentration to mimic the dynamic changes in 

hormone concentration at plant growth points, enhancing search diversity and avoiding local 

optima. Through simulation experiments, the improved PGSA significantly reduces 

computation time and iteration counts when solving large-scale dynamic route optimization 

problems for multiple distribution centers, offering an efficient and intelligent solution for 

electric vehicle delivery route optimization. By integrating biological principles with 

optimization algorithms, this study not only expands the application domain of PGSA but also 

lays the foundation for further research on bio-inspired algorithms in logistics optimization. 

Keywords: multiple distribution centers; dynamic route optimization; plant growth simulation 

algorithm; phototropism; bio-inspired algorithm 

1. Introduction 

With the rapid development of industry, global climate issues have become 

increasingly prominent, and the strategy of energy transformation has gained depth. 

Issues such as low carbon, energy conservation, and environmental protection have 

attracted widespread attention. In 2021, China proposed building a new power system 

centered on renewable energy. Using electric vehicles for logistics and distribution has 

become the direction and trend of future logistics development. Electric vehicles have 

low energy consumption and low noise, but they are greatly constrained by long 

charging times and the current shortage of charging stations. How to reasonably 

dispatch electric vehicles has become a hot topic of discussion [1,2]. In the context of 

increasingly severe global climate issues, countries are taking energy transition 

strategies to reduce greenhouse gas emissions and dependence on fossil fuels. Electric 

vehicles, as low-carbon and environmentally friendly transportation tools, can not only 

improve delivery efficiency but also effectively reduce carbon emissions. In 2023, 
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China's oil imports reached approximately 564 million tons, with an import value of 

337,494 billion US dollars, of which 94% of gasoline consumption is used by 

passenger vehicles. China's high dependence on oil urgently requires promoting 

electric vehicles and optimizing their delivery routes to reduce reliance on imported 

oil and enhance energy security. 

Vehicle Routing Problem (VRP) was proposed by Dantzig and Ramser in 1959 

[3]. There have been continuous studies on VRP optimization by scholars, and rich 

research achievements have been achieved in interference management, logistics 

distribution, transportation and other fields [4–6]. In addition, scholars also use genetic 

algorithm, ant colony algorithm, emergency search algorithm and other heuristic 

algorithms to solve VRP problems. VRP refers to arranging appropriate vehicle routes 

so that vehicles meet constraints, pass through a series of delivery points and/or 

delivery points, and achieve certain goals. VRP is mainly divided into dynamic vehicle 

routing problem and static vehicle routing problem. The latter refers to the 

arrangement of vehicle routing when information such as vehicle, time, personnel and 

customer needs are determined. However, in the real world, customers' demands, 

traffic conditions, weather, personnel, vehicles and other information are uncertain, 

and some information is in a constantly changing state [7]. For example, after the 

vehicle has set off, there may still be new customer service requests or customer 

information changes. The dispatching system needs to respond quickly to the update 

of information and dynamically arrange the route of the vehicle according to the 

constantly updated system information. This is the dynamic vehicle routing problem 

(DVRP) [8].  

In addition, with the development of modern information technology, real-time 

vehicle routing optimization has become possible. Technological tools such as 

geographic information systems (GIS), Global Positioning Systems (GPS), intelligent 

transportation systems (ITS), mobile e-commerce platforms (MCS) and the Global 

System for Mobile Communications (GSM) can help people access dynamic 

information in real time. The dispatching center needs to constantly combine new 

information to generate a new distribution plan when each dynamic event occurs [9]. 

The process of information acquisition is as follows: MCS is used to obtain customer 

demand and demand point location information, ITS is used to obtain real-time traffic 

information, GPS is used to locate vehicles, and GIS is used to obtain the actual 

distance between any two customers. Based on the above real-time information, after 

each dynamic event occurs, the distribution depot can generate a new distribution 

route, and its instructions are sent to drivers through GSM.  

According to the number of distribution depots, the vehicle scheduling problem 

can be divided into single distribution depot VRP problem and multi-distribution depot 

VRP problem. With the expansion of urban scale, the customer demand points of 

urban distribution are numerous and unevenly distributed, the number and demand of 

customers are constantly changing, and the traffic situation is complicated. 

Considering the above problems, the initial distribution scheme of single distribution 

depot cannot meet the needs of customers and enterprises, and cannot guarantee the 

minimum total distribution cost and the highest customer satisfaction [10]. Therefore, 

real-time information based multi-distribution depot vehicle routing optimization has 

important practical significance. Multi-Deport Vehicle Routing Problem (MDVRP) 
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refers to the use of multiple distribution depots to distribute to customers. There are 

two ways to solve it. The first one is decomposition method, which means that the 

vehicle scheduling problem of multiple distribution depots is transformed into the 

vehicle scheduling problem of multiple single distribution depots; the second is the 

holistic method, which sets a virtual depot, and its distribution point covers all the 

actual depot and distribution point. It stipulates that the distribution vehicle must start 

from the set virtual depot and complete the distribution task towards the distribution 

point of the virtual depot [11]. Xiao, Tan, Zhou and Zeng converted the problem into 

vehicle scheduling problem of single distribution depot by using boundary allocation 

method, and solved the optimal scheduling scheme of cross-regional distribution by 

using genetic algorithm and ant colony algorithm [12]. Based on the analysis of the 

penalty function of time window, Shi, Wang and Ge established a multi-distribution 

depot vehicle scheduling model with time window. Based on the model, they designed 

a two-stage solution algorithm, firstly dividing customers into different distribution 

depots by scanning algorithm, and then using improved genetic algorithm to solve the 

vehicle scheduling model of single distribution depot with time window [13]. Chen 

adopted the two-stage method. He first established a mathematical model of multi-

distribution depot vehicle scheduling according to the characteristics of multi-

distribution depots, then used fuzzy membership degree method to classify customers 

to determine the customers distributed by distribution depots, and adopted improved 

immune clone selection heuristic algorithm to solve the problem of vehicle scheduling 

[10]. Ge Xianlong studied the open VRP problem of multi-distribution depot dynamic 

demand across regions. In his research, he proposed sharing and joint distribution 

strategies of distribution vehicles, established vehicle routing optimization models 

conforming to the actual situation, and improved genetic algorithm by using cloud 

model theory to solve the model and obtained good results [14]. 

Dynamic vehicle routing optimization in multiple distribution depots based on 

real-time information is a nonlinear integer optimization problem [15]. It requires a 

large-scale nonlinear integer programming algorithm because of its complex 

constraint conditions. At the same time, the calculation speed of the algorithm needs 

to be improved to ensure that the distribution route of vehicles can be adjusted in real 

time. Plant Growth Simulation Algorithm (PGSA) is an intelligent optimization 

algorithm proposed by Li et al. in 2005. It is derived from the phototropism mechanism 

of plants and is suitable for global optimization of integer programming problems [16].  

However, traditional PGSA has limitations, such as excessive iterations and long 

computation time, which are not conducive to real-time vehicle optimization. In this 

research, biomechanic principles were introduced into the improved Plant Growth 

Simulation Algorithm for dynamic vehicle scheduling in multiple distribution centers. 

With leveraging biomechanics principles, a variable step-size mechanism was also 

designed in the improved algorithm. This design can significantly improve the search 

efficiency and reduce the number of iterations. Moreover, based on biomechanic-

inspired concepts, randomly rearranging auxin concentration in the algorithm will 

enhance the search diversity. By applying bi-level programming, the algorithm can 

effectively deal with complex constraints. And then it can improve both the 

computational speed and the quality of solutions in real-time optimization scenarios. 

At present, PGSA has been applied to solve travel agents [17], shop scheduling [18], 



Molecular & Cellular Biomechanics 2025, 22(3), 880.  

4 

facility location [19], emergency management [20], power systems [21], and other 

combinatorial optimization problems [5,22]. When it comes to solving the multi-

distribution depot dynamic vehicle scheduling problem based on real-time 

information, the original algorithm still has some shortcomings. And it is improved in 

this research. 

In summary, scholars at home and abroad have conducted in-depth research on 

real-time optimization of electric vehicle routing, dynamic vehicle routing and multi-

distribution depot vehicle routing. At the same time, they have made useful attempts 

and made great achievements in terms of theory, model and algorithm. However, there 

are few research results on multi-distribution depot based on real-time information. 

Most studies are based on the occurrence of dynamic events for real-time route 

optimization, or on the condition of customer information to determine the multi-

distribution depot vehicle scheduling problem optimization, and have not considered 

the real-time route optimization under the condition of dynamic events. And at the 

same time, it fails to take into account the national requirements for green and low-

carbon delivery. On this basis, the paper constructs a two-layer programming model 

of new energy vehicle delivery routes. Firstly, it uses fuzzy membership degree 

method to partition customers. Secondly, based on real-time information, it introduces 

virtual customers and transforms electric vehicle dynamic routing problem into static 

vehicle routing problem, thus constructing a real-time optimization model of multi-

distribution depot dynamic vehicle routing with the lowest distribution cost and the 

highest customer satisfaction as the goal. According to the characteristics of the model 

and algorithm, this study designed an improved algorithm to simulate plant growth. It 

establishes the initial distribution route, and makes real-time optimization and 

comparison of the route, which proves the effectiveness of the model and algorithm. 

2. Problem description and model construction 

2.1. Problem description and analysis 

In analyzing the dynamic routing problem of electric vehicles in multiple 

distribution centers, we can draw on the optimization path selection mechanisms found 

in biological systems. From the perspective of Biomechanic Principles, organisms in 

nature adapt to their environments and choose optimal paths to acquire resources, 

which can provide insights for the design of electric vehicle delivery routes. The 

growth patterns of plants, which are influenced by biomechanical factors (gravity and 

the distribution of nutrients), offer valuable insights for the design of electric vehicle 

delivery routes. By introducing the Plant Growth Simulation Algorithm (PGSA), 

which mimics the growth behavior of plants under light and resource distribution, we 

can effectively optimize delivery paths. Additionally, with the integration of 

Biomechanic Principles, the algorithms can be improved again. Like plants adjust their 

growth rate based on environmental factors in a biomechanical sense, this variable 

step size in the algorithm allows for more efficient exploration of the solution space, 

reducing the number of unnecessary iterations. Inspired by the randomness in the 

distribution of biological substances in organisms, in the next research stage, we plan 

to randomly rearrange the auxin concentration in the algorithm, enhancing the search 

diversity. The multi-distribution depot electric vehicle dynamic routing problem based 
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on real-time information can be described as: there are multiple distribution depots to 

provide distribution services for customers, and the total inventory of multiple 

distribution depots can meet the needs of all customers. Customers are zoned and 

served by different distribution depots. When dynamic events (changes in the number 

of customers, changes in demand, traffic congestion and breakdown of delivery 

vehicles) occur, the system re-partitions customers and arranges the driving route of 

delivery vehicles, aiming at the lowest total delivery cost and the highest customer 

satisfaction.  

This paper can be transformed into a dynamic vehicle scheduling problem for 

multiple vehicle types in multiple distribution depots. Assume that all distribution 

depots have the same vehicle models, the maximum deadweight is 𝑄 tons, and the 

maximum driving distance is 𝐿; The vehicle in the distribution route has completed 

𝑄𝑟 tons of goods distribution, and the 𝑄 − 𝑄𝑟 tons of goods remain on the vehicle, its 

maximum driving distance is 𝐿 − 𝐿𝑟 . Therefore, a vehicle departing from a 

distribution depot after a dynamic event occurs and a vehicle in transit can be regarded 

as a different vehicle type. 

In this study, a two-layer programming model is adopted to further transform the 

dynamic vehicle scheduling problem of multi-vehicle model and multi-distribution 

depot into a static vehicle routing problem of single-vehicle model and single-

distribution depot. Firstly, it adopts decomposition method to decompose multiple 

distribution depots into multiple single distribution depots, and carries out route 

optimization respectively. Secondly, this study sets a virtual customer at the current 

location of vehicle ℎ  undergoing distribution, whose demand is 𝑄ℎ . The distance 

between the virtual customer and the distribution depot is 𝑄ℎ , and the in-transit 

distribution vehicle is constrained to serve its corresponding virtual customer first. By 

applying the Improved Plant Growth Simulation Algorithm with Biomechanic 

Principles, the complex constraints in this process can be better handled, improving 

the computational speed and the quality of the optimized routes. 

2.2. Upper level model—customer classification for multiple distribution 

depots 

This paper adopts the customer division method of multi-distribution depot in 

literature [8], that is, the fuzzy membership degree method is used to classify 

customers. According to the maximum membership degree between the customer and 

the distribution depot, this study determines the distribution relationship between 

distribution depot and the customers. Firstly, by using the fuzzy method, based on the 

location of the customer and the distribution depot, this study determines the 

membership degree of a customer to each distribution depot. The greater the degree of 

customer membership to the distribution depot, the more distribution should be carried 

out by the distribution depot. The membership function is as follows: 

𝜇𝑃𝑖 = 1 −
𝑑(𝐾𝑗, 𝑃𝑖)

∑ 𝑑(𝐾𝑗, 𝑃𝑖)
𝑚
𝑖=1

 (1) 

where 𝐾𝑖  represents customer 𝑖 , 𝑃𝑗  represents distribution depot 𝑗 , and 𝑑(𝐾𝑖, 𝑃𝑗) 

represents the distance between customer 𝑖 and distribution depot 𝑃𝑗. 



Molecular & Cellular Biomechanics 2025, 22(3), 880.  

6 

When the difference between the maximum membership degree and the second 

largest membership degree of A customer is greater than 𝛽, then the customer should 

be distributed by the corresponding distribution depot. Other customers are fuzzy 

customers and need to be classified again.  

The secondary classification determines whether the distribution is carried out by 

the same distribution depot according to the fuzzy membership degree among 

customers. The classification method is as follows:  

𝑃(𝑚) = 𝑚𝑖𝑛∑∑(𝑑(𝑘𝑚, 𝑘𝑖) +

𝐾−1

𝑗=1

𝐾−1

𝑖=1

𝑑(𝑘𝑚, 𝑘𝑗)) (2) 

𝑘𝑖, 𝑘𝑗 ∈ 𝑃 (3) 

𝑘𝑖 ≠ 𝑘𝑚, 𝑘𝑗 ≠ 𝑘𝑚 (4) 

where, 𝐾  represents customer, 𝑘𝑚  represents fuzzy customer, 𝑑(𝑘𝑚, 𝑘𝑖) represents 

the distance between 𝑘𝑚 and 𝑘𝑚, 𝑘𝑖 and 𝑘𝑚 require the same distribution depot for 

distribution. 

2.3. Lower level model—multi-distribution depot dynamic vehicle 

routing optimization model 

(1) Analysis of Energy Consumption and Charging Demand for Electric Vehicles 

The power consumption of electric vehicles is not only related to the inherent 

properties of the vehicle but also influenced by the actual driving distance and speed. 

Therefore, for an electric vehicle h with a maximum actual load of q traveling at a 

speed of v, the operating power can be calculated as follows: 

𝐸(𝑄ℎ, 𝑣) =
(𝑞 + 𝑄ℎ)𝑔𝜀𝑣 +

𝐶𝑑𝐴𝑣
3

21.15
3600𝜂

 
(5) 

g represents the acceleration of gravity; η represents the mechanical efficiency of 

the transmission system; ε, Cd, A respectively represent the rolling resistance 

coefficient, air resistance coefficient, and frontal area of the vehicle. 

The amount of electricity consumed by the electric vehicle on the transportation 

route is: 

𝑀𝑖𝑗ℎ = 𝐸(𝑄ℎ, 𝑣𝑖𝑗)𝑡𝑖𝑗 (6) 

Mijh represents the power consumption of electric vehicle h from node i to node 

j. When the remaining battery capacity of the electric vehicle is insufficient to serve 

the next customer, rapid charging is required during the delivery process. The charging 

time of the electric vehicle at the charging station is: 

𝑟 = ∑ ∑
𝑀𝑗ℎ

𝑚𝑎𝑥

𝐿

𝑛∑

ℎ=1

𝑚∑𝑗ℎ

𝑗=0

 (7) 
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Mmax represents the maximum battery capacity of the electric vehicle; Mjh 

represents the remaining battery capacity of electric vehicle h at node j; L represents 

the charging frequency of the electric vehicle. 

For the calculation of charging costs, when the remaining battery capacity of the 

delivery vehicle is insufficient to serve the next customer, rapid charging mode needs 

to be adopted during transportation. The electricity cost is proportional to the charging 

time. 

𝑐2 = 𝑙𝑘 (8) 

(2) Model establishment 

Symbol definition: 

𝑃 represents 𝐾1 = {1,2, . . . , 𝑛
′} the distribution depot;  

Followings are the set of customers that have been served: 

𝐾2 = {1,2, . . . , 𝑛} represents the set of customers that have not been served yet;  

𝐾 = {1,2, . . . , 𝑛′, . . . 𝑛′ + 𝑛} represents the set of all customers;  

𝑁 = {1,2, . . . , 𝑛, . . . 𝑛 + 𝑜 + 𝑝} represents the set of all current nodes (customers 

that have not been served yet, virtual customer, distribution depot);  

𝐻 = {1,2, . . . , 𝑚} represents the set of distribution vehicles; 

ℎ𝑝 represents the number of distribution vehicles of the 𝑝 distribution depot;  

𝑄 represents the maximum loading capacity of the distribution vehicles;  

q represents the tare weight of the electric delivery vehicle; 

𝐿 represents the maximum traveling distance of the distribution vehicles;  

𝑣 represents the average speed of the distribution vehicles;  

𝑐 represents the unit transportation cost;  

𝑐0 represents the fixed cost of vehicles providing distribution services;  

𝑐1 represents the fixed cost required for the vehicle to perform delivery services; 

𝑐2 represents the charging cost of the delivery vehicle; 

𝑑𝑖𝑗 represents the distance between any two nodes;  

𝑞𝑖 represents the demand of customer 𝑖; 

𝑡𝑖 represents the time when a vehicle begins to serve customer 𝑖; 

𝑆𝑖 represents the service time of customer 𝑖; 

𝑟𝑝ℎ𝑖 represents customer 𝑖 in the route of vehicle ℎ of distribution depot 𝑝;  

𝑘ℎ𝑝 represents the number of customers served by vehicle ℎ of distribution depot 

𝑝; 

[𝐸𝑖, 𝐿𝑖] represents the time window required by a customer;  

[𝑎𝑖, 𝑏𝑖] represents the service time window that customer 𝑖 can tolerate;  

The following decision variable has been introduced:  

𝑥𝑖𝑗ℎ = {
1, Vehicle ℎ visit customer j from node i

0，other
 

Typically, penalty costs are applied in vehicle delivery problems with time 

windows. But in practice, the deviation of service time can only lead to the reduction 

of customer satisfaction, but does not lead to the penalty cost. Therefore, the 

trapezoidal fuzzy time window in literature [23] is adopted in this paper to establish 
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the membership degree function 𝜇𝑖(𝑡𝑖) of service starting time, which is defined as 

the satisfaction of customer 𝑖, as shown in Equation (9).  

𝜇𝑖(𝑡𝑖) =

{
 
 

 
 
0,                              t𝑖 < 𝐸𝑖
( t𝑖 − 𝐸𝑖)/(𝑎𝑖 − 𝐸𝑖), 𝐸𝑖 < 𝑡𝑖 < 𝑎𝑖
1,                               𝑎𝑖 < 𝑡𝑖 < 𝑏𝑖
(𝐿𝑖 − 𝑡𝑖)/(𝐿𝑖 − 𝑏𝑖),   𝑏𝑖 < 𝑡𝑖 < 𝐿𝑖
0,                              t𝑖 > 𝐿𝑖  

 (9) 

Multi-distribution depot dynamic vehicle routing model based on real-time 

information: 

𝑚𝑎𝑥 𝑍 1 =
1

𝑛
∑𝜇𝑖(𝑡𝑖)

𝑛

𝑖=1

 (10) 

𝑚𝑖𝑛 𝑍 2 = (𝐶0 +∑∑∑𝑐

𝑚

ℎ=1

𝑛

𝑗=0

𝑛

𝑖=0

⋅ 𝑥𝑖𝑗ℎ) (11) 

s. t.  

∑∑𝑞𝑖𝑥𝑖𝑗ℎ ≤ 𝑄

𝑗∈𝑁𝑖∈𝑁

，ℎ ∈ 𝐻 (12) 

∑∑𝑑𝑖𝑗𝑥𝑖𝑗ℎ ≤ 𝐿

𝑗∈𝑁𝑖∈𝑁

 (13) 

∑∑𝑥𝑖𝑗ℎ = 1

𝑖∈𝑁ℎ∈𝐻

，𝑖 ∈ 𝑁 (14) 

∑∑𝑥𝑖𝑗ℎ = 1

𝑗∈𝑁ℎ∈𝐻

，𝑗 ∈ 𝑁  (15) 

∑ ∑ 𝑘ℎ𝑝
ℎ𝑝∈𝐻𝑝∈𝑃

 (16) 

𝑅𝑝ℎ = {𝑟𝑝ℎ𝑖|𝑟𝑝ℎ𝑖 ∈ 𝑁}, 𝑖 = 1,2, . . . , 𝑘𝑝ℎ𝑝  (17) 

∑𝑥𝑖𝑗ℎ −∑𝑥𝑖𝑗ℎ
𝑗∈𝑁

= 0

𝑖∈𝑁

，𝑖 ∈ 𝑁，ℎ ∈ 𝐻 (18) 

∑∑ ∑ 𝑥𝑝𝑗ℎ =

𝑗∈𝑁,𝑗≠0𝑝∈𝑃ℎ∈𝐻

∑∑ ∑ 𝑥𝑖𝑝ℎ =

𝑖∈𝑁,𝑖≠0𝑝∈𝑃ℎ∈𝐻

𝑚 (19) 

𝑥𝑝𝑗ℎ = 1，𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑜，ℎ ∈ 𝐻 (20) 

The meanings of the equations in the above model are:  

Objective function (10) represents the highest average customer satisfaction as 

the goal; 
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Objective function (11) represents the lowest total distribution cost as the goal; 

Constraint (12) ensures that the loading capacity of each vehicle is within the 

maximum loading capacity; 

Constraint (13) ensures that the total driving distance of each vehicle does not 

exceed its maximum driving distance; 

Constraints (14) and (15) ensure that each customer can only be served once; 

Constraint (16) represents the total number of customers distributed by all 

distribution depots; 

Constraint (17) represents the combination of customers on each route; 

Constraint (18) means that on each route, the number of vehicles leaving each 

node is equal to the number of vehicles entering the node; 

Constraint (19) ensures that the starting point and ending point of all distribution 

vehicles are the same distribution depot; 

Constraint condition (20) indicates that each vehicle executing the task must first 

serve the corresponding virtual customer, so that the distribution path is transformed 

into a simple circle. 

3. Algorithm design 

3.1. The basic idea of the plant growth simulation algorithm 

The Plant Growth Simulation Algorithm (PGSA) is inspired by the growth 

mechanisms of plants in nature, particularly how plants optimize themselves through 

phototropism and resource acquisition. By simulating the growth process of plants 

under different environmental conditions, PGSA can dynamically adjust delivery 

routes and optimize resource allocation, thereby achieving more efficient logistics 

scheduling. The plant growth simulation algorithm (PGSA) is an optimization 

algorithm inspired by the light growth of plants in nature, and it is a simulation of plant 

growth characteristics [16]. Let the length of the trunk of A plant be 𝑀, the length of 

its branches be 𝑚, and there are 𝐾 growing points on the trunk, which are represented 

as 𝑆𝑀 = (𝑆𝑀1, 𝑆𝑀2,⋯ , 𝑆𝑀𝑘). The auxin concentration at these growth points is 𝑃𝑀 =

(𝑃𝑀1, 𝑃𝑀2, ⋯ , 𝑃𝑀𝑘) , and there are 𝑞  growth points on the branches, which are 

represented as 𝑆𝑚 = (𝑆𝑚1, 𝑆𝑚2,⋯ , 𝑆𝑚𝑞). The corresponding morph concentration at 

these growth points is 𝑃𝑚 = (𝑃𝑚1, 𝑃𝑚2, ⋯ , 𝑃𝑚𝑞). Based on the above conditions, the 

morphactin concentration at each growth point on the trunk and branches of this plant 

can be calculated by the following formula:  

𝑃𝑀𝑖 = 
𝑓(𝑥0) − 𝑓(𝑆𝑚𝑖)

∑ (𝑓(𝑥0) − 𝑓(𝑆𝑀𝑖)) + ∑ (𝑓(𝑥0) − 𝑓(𝑆𝑚𝑗))
𝑞
𝑖=1

𝐾
𝑖=1

 (21) 

𝑃𝑀𝑗 = 
𝑓(𝑥0) − 𝑓(𝑆𝑚1)

∑ (𝑓(𝑥0) − 𝑓(𝑆𝑀𝑖)) + ∑ (𝑓(𝑥0) − 𝑓(𝑆𝑚𝑗))
𝑞
𝑗=1

𝐾
𝑗=1

 (22) 

Where: 𝑥0 is the root point of the plant (i.e. the initial base point); 𝑓() represents the 

environment information function at this growth point (i.e. the objective function in 

the optimization problem). The smaller its value is, the more favorable the growth 

environment conditions at this point are for growth, and the more conducive to the 
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growth of new stems and leaves. It can be seen from Equations (21) and (22) that 

morphin concentration at each growth point on the plant is determined by its relative 

location and the environmental information at that point. From these two formulas, it 

can be further inferred that: 

∑∑(𝑃𝑀𝑖 + 𝑃𝑀𝑗)

𝑞

𝑗=1

𝐾

𝑖=1

= 1 (23) 

Random numbers between [0,1] are generated by computer simulation. When the 

generated random number falls in the state space between, the growth point 

corresponding to this state space will grow new branches and leaves before other 

growth points. When this branch grows, the morphactin concentration value of the 

growth point will be redistributed and regenerated into a new random number 

corresponding to the growth priority of the growth point. This process iterates until no 

new branches are created.  

3.2. Algorithm improvement 

The advantage of the plant growth simulation algorithm is that it can find the 

optimal solution in the global scope. Compared with other optimization algorithms, it 

has no limitations in parameter setting [24,25]. However, when solving large-scale 

problems, due to its large growth space, the solving run time will be longer. When 

solving the electric vehicle dynamic routing problem of a multi-distribution depot, the 

solution space will be very large because there are many customers and distribution 

vehicles involved and the scheduling situation is complicated. This requires high 

computational speed, so it is necessary to improve the original algorithm [26]. Since 

both customer distribution and vehicle distribution routes affected by dynamic events 

need to be adjusted, the idea of two-layer programming should be introduced into the 

algorithm. Specific improvement measures are as follows:  

(1) In the variable step search operation, the search scope depends on the step 

size every time the growing point is searched. In the original algorithm, assuming that 

the main stem is grown first, the step size is an integer greater than 1. The branches 

are followed, and the steps are all set to 1. This step size design can ensure that the 

local optimal solution close to the growth point can be searched without missing, but 

the search efficiency is greatly reduced. If the initial solution is far away from the 

optimal solution, the number of growth will increase, so it cannot converge to the 

optimal solution quickly [27]. In order to solve this problem, this paper draws on the 

following characteristics: the length of the branches is different each time the plants 

grow, and they grow first and then grow short. On this basis, this study will calculate 

the step size gradually decreasing from long to short until it finally reduces to 1, so as 

to search for the change of the step size of the solution. The specific operation steps 

are as follows: for the given interval length of objective function 𝐷, take step size 𝜆1 

as [𝐷/2] − 1 , take 𝜆2  as [𝜆1/2] − 1 , and finally 𝜆𝑘 = 1  as the minimum branch 

length. After adopting the variable step size design, the number of iterations is greatly 

reduced, and the search efficiency and calculation speed are improved.  

(2) As for the random ordering of auxin concentration, the distribution and 

arrangement sequence of auxin concentration set in the original algorithm remained 
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unchanged from beginning to end. This parameter setting method may cause a certain 

growth point to be repeatedly selected, resulting in the decrease of search efficiency 

and the increase of calculation time, which is not conducive to obtaining the optimal 

solution in a short time [28]. In fact, as new shoots are produced, the auxin 

concentration at each node of the plant decreases as the number of growing points 

increases, and the order of auxin concentration changes accordingly [29]. Therefore, 

in this paper, the order of auxin concentration is randomly rearranged in each cycle, 

so as to reduce the probability of repeated selection of a certain growth point and 

shorten the calculation time. 

(3) When solving the problem of multiple independent variables, the two-layer 

growth primitive algorithm assumes that each independent variable is independent of 

each other, so it cannot define the relationship between each variable by changing each 

chromosome parameter like genetic algorithm, so it is difficult to effectively solve the 

problem of multiple independent variables being interrelated [30]. In the model 

established in this paper, two variables, namely dynamic events and multi-distribution 

depot scheduling affected by dynamic events, need to be considered at the same time, 

and the two variables are closely related, so it is necessary to use the idea of two-layer 

programming to divide them into two layers. 

3.3. Algorithm design 

Let 𝑥0
𝑛 , the location where dynamic event 𝑛  occurs, and 𝑎𝑘 = (𝑥0

𝑛, 𝑞0
𝑛) , the 

quantity change 𝑞0
𝑛 in demand, be the growth point BBB of the upper layer, and CC, 

the location of nodes in the initial distribution scheme, and 𝑞0
𝑚, the demand, be the 

growth point 𝑏𝑘 = (𝑥0
𝑚, 𝑞0

𝑚)  of the lower layer. If the customers need to be 

reclassified after the occurrence of dynamic event 𝑛, the growth point of the lower 

layer is first grown; If there is no need to reclassify customers after the occurrence of 

dynamic event 𝑛, the growth point of the upper layer is first grown. 

Step 1: Input the original data, including the location and demand of each node, 

classify the customers, and determine the initial distribution scheme. The scheme must 

meet the constraints of electric vehicles’ loading capacity, maximum driving distance 

and time window. Then, input the location 𝑥0
𝑛 of dynamic event 𝑛 and the quantity of 

demand changes 𝑞0
𝑛, and determine the location growth step 𝜆𝑥

𝑛 of distribution depot, 

the number of distribution vehicles growth step 𝜆𝑞
𝑛 and the initial objective function 

𝑓(𝑥0).  

Step 2: Determine the initial growth point location. If the customers need to be 

reclassified after the occurrence of dynamic event 𝑛, the growth points of the lower 

layer are first grown, and then go to Step 3. If there is no need to reclassify customers 

after the occurrence of dynamic event 𝑛, the growth point of the upper layer will first 

grow, and then go to Step 6.  

Step 3: Take (𝑥0
𝑛, 𝑞0

𝑛) as the base point and (𝜆𝑥
𝑛, 𝜆𝑞

𝑛) as the step length, 2𝑛 new 

growth points were obtained after growth, and the new growth points meeting the 

constraint conditions were incorporated into the set of growth points; calculate the 

function value of each growth point, and the growth point whose objective function 

value is less than 𝑓(𝑥0
𝑛, 𝑞0

𝑛) is retained to find the growth point with the smallest 

objective function.  
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Step 4: Calculate the growth probability (morphactin concentration) of points to 

be grown, and calculate the morphactin concentration 𝑃1, 𝑃2, ⋯ , 𝑃𝑛 of all points to be 

grown in the set of points to be grown. The calculation method is as shown in the 

above section, and the corresponding growth point is randomly selected on (0,1) as 

the new base point. 

Step 5: Calculate the feasible solution range of dynamic event 𝑛, namely the 

service distribution depot location 𝐷𝑥
𝑛, the number of vehicles 𝐷𝑞

𝑛, and then calculate 

the new step sizes 𝜆𝑥
𝑛 and 𝜆𝑞

𝑛; 

Step 6: Take the position 𝑥0
𝑚 of each node in the initial distribution scheme and 

the demand 𝑞0
𝑚 as the base point, and take (𝜆𝑥

𝑛, 𝜆𝑞
𝑛) as the step size to get 2𝑛 new 

growth points, and incorporated the new growth points meeting the conditions into the 

growth point set; calculate the function values of and growth points, retained the 

growth points whose objective function values were less than 𝑓(𝑥0
𝑚, 𝑞0

𝑚) , and 

determined the minimum value of the objective function of each growth point and its 

growth point. 

Step 7: Calculate the growth probability 𝑃1, 𝑃2,⋯ , 𝑃𝑛 and randomly select the 

corresponding growth point on (0,1) as the new base point. 

Step 8: Judge whether the number of search iterations reaches the set maximum 

number of cycles, and whether there is only the set of minimum points of the objective 

function value in the growth point set. If the value of the objective function of all the 

growing points in the growing points set becomes stable, then finish the calculation; 

otherwise, let 𝜆0 = [𝜆0/2] − 1 and return to Step 2. 

Step 9: End.  

4. Example simulation 

This article demonstrates through simulation results that the proposed Plant 

Growth Simulation Algorithm effectively solves the electric vehicle delivery route 

optimization problem. It explores how these solutions resonate with optimization 

strategies in biological systems, utilizing simulations of biological growth patterns to 

optimize the service area division of distribution centers. In this paper, with reference 

to Chen's study, the simulation data is designed as follows: A company has three 

distribution depots: 𝑃1(2,8) , 𝑃2(9,14)  and 𝑃3(16.5,10) , each with five electric 

vehicles of the same model, providing distribution services for 15 customers. The 

maximum carrying capacity of the vehicle is 10 t, the maximum driving distance of 

each vehicle is 200 km, and the speed is 20 km/h. We roughly calculate 1/3 of the 

demand as the service time of the demand point, the transportation cost is 10 yuan/km, 

and the fixed cost of delivery service for each vehicle is 100 yuan. 𝑎𝑖 = 𝐸𝑖 − 2, 𝑏𝑖 =

𝐸𝑖 + 2, customers with conditions for secondary classification are 𝛽 = 0.1. Specific 

information is shown in Table 1.  
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Table 1. Customers’ demand. 

No. Coordinate  Demand (t) Time window No  Coordinate  Demand (t) Time window 

1 (2.9, 13.4) 2.8 (1, 3) 11 (10.5, 10.8) 0.8 (1, 3.5) 

2 (6.5, 7.3) 1.9 (3, 5) 12 (10, 19.3) 2.8 (3, 7) 

3 (15, 16.5) 0.9 (2, 5) 13 (13.6, 8) 2.7 (3, 6) 

4 (7, 14.3) 1.8 (3.5, 6) 14 (19.1, 8.5) 2.7 (2, 4) 

5 (2.1, 4.4) 2.8 (2, 4.5) 15 (11.7, 8.4) 1.8 (3, 5) 

6 (3, 1.4) 2.5 (1, 4) 16 (19.2, 12.4) 2.8 (3, 5) 

7 (3.9, 9.1) 1.2 (1.5, 5) 17 (11.7, 16.9) 1.6 (2.5, 5) 

8 (0.3, 11.5) 2.8 (2, 4) 18 (12.8, 12.2) 1.8 (1.5, 3) 

9 (12.3, 0.4) 2.7 (2, 5) 19 (17, 14) 2.7 (1.5, 5) 

10 (2.3, 15.9) 2.5 (0.5, 4) 20 (17.6, 1) 2.5 (1, 5) 

4.1. Initial distribution scheme 

Using the above improved simulation plant growth algorithm, this study solved 

the model. In a computer with a Window10 system and 4G memory, the researcher 

used MATLAB 2020a to complete the calculation.  

(1) Area division of customers 

Customers are divided into different areas for distribution, and the membership 

degree of each customer to the distribution depot is solved. The membership degree 

and the initial classification results are as shown in Table 2.  

Table 2. Membership degree and initial classification of the initial distribution scheme. 

No. 
Membership 

degree to P1 

Membership 

degree to P2 

Membership 

degree to P3 
Classification No.  

Membership 

degree to P1 

Membership 

degree to P2 

Membership 

degree to P3 
Classification  

1 0.786 0.761 0.453 P1,P2 11 0.517 0.81 0.673 P2 

2 0.794 0.676 0.531 P1 12 0.547 0.824 0.629 P2 

3 0.459 0.774 0.768 P2,P3 13 0.489 0.667 0.845 P3 

4 0.608 0.901 0.491 P2 14 0.459 0.636 0.905 P3 

5 0.883 0.617 0.5 P1 15 0.537 0.704 0.759 P2,P3 

6 0.818 0.619 0.563 P1 16 0.44 0.674 0.886 P3 

7 0.9 0.677 0.423 P1 17 0.484 0.845 0.671 P2 

8 0.867 0.69 0.443 P1 18 0.423 0.791 0.786 P2,P3 

9 0.657 0.625 0.719 P1, P3 19 0.427 0.716 0.857 P3 

10 0.739 0.77 0.491 P2, P3 20 0.59 0.627 0.823 P3 

According to the above calculation results, the researcher conducted a secondary 

classification of customers 1, 3, 9, 10, 15 and 18. The calculation results according to 

Equation (2) are as shown in Table 3.  
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Table 3. Second classification of the initial distribution scheme. 

No. Membership degree to P1 Membership degree to P2 Membership degree to P3 Classification  

1 0.786 0.761 0.453 P1 

3 0.459 0.774 0.768 P2 

9 0.657 0.625 0.719 P3 

10 0.739 0.77 0.491 P1 

15 0.537 0.704 0.759 P3 

18 0.423 0.791 0.786 P2 

Through calculation, customers of P1 distribution depot include 1, 2, 5, 6, 7, 8, 

10; customers of P2 include 3, 4, 11, 12, 17, 18; customers of P3 include 9, 13, 14, 15, 

16, 19, 20. 

(2) Initial distribution route 

After calculation, the initial distribution route is obtained as follows Table 4: 

Table 4. Initial distribution scheme. 

Distribution 

depot 
Route 

Total 

length 
Transportation cost 

Transportation 

volume 

Loading 

rate 

Customers’ 

satisfaction 

P1 
P1-8-10-1-P1 16.77 267.7 8.1t 81% 80% 

P1-5-6-2-7-P1 18.95 289.5 8.4t 84% 78% 

P2 
P2-4-12-17-3-11-18-

P2 
25.17 351.7 8.6t 86% 63% 

P3 
P3-14-16-19-P3 13.65 236.5 8.2t 82% 85% 

P3-20-9-15-13-P3 27.89 378.9 9.7t 97% 64% 

The total driving route of each distribution depot is 102.43 km, the transportation 

cost is 1524.3 yuan, the loading rate is 86%, and the customer satisfaction rate is 74%. 

4.2. Real-time optimization of distribution routes 

Due to the limitation of length, this paper only takes the change of customer 

number and demand as an example for route optimization based on real-time 

information.  

At T = 1 h 30 min, the following dynamic event occurs: Old customer 14 reduces 

demand by 0.5 t, old customer 17 increases demand by 1 t, old customer 2 cancels 

order, and new customers 21, 22, 23, 24, 25, 26 emerge. At this time point, the 

customers that need to be served are as shown in Table 5. 
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Table 5. Customers’ demand. 

No.  Coordinate  Demand (t) Time window No. Coordinate  Demand (t) Time window 

1 (2.9, 13.4) 2.8 (1, 3) 15 (11.7, 8.4) 1.8 (3, 5) 

3 (15, 16.5) 0.9 (2, 5) 17 (11.7, 16.9) 2.6 (2.5, 5) 

7 (3.9, 9.1) 1.2 (1.5, 5) 18 (12.8, 12.2) 1.8 (1.5, 3) 

9 (12.3, 0.4) 2.7 (2, 5) 21 (2.5, 11.4) 1.6 (0, 2.5) 

10 (2.3, 15.9) 2.5 (0.5, 4) 22 (4.6, 6.2) 2.8 (2, 3.5) 

11 (10.5, 10.8) 0.8 (1, 3.5) 23 (7.2, 8.6) 2.5 (0.5, 3) 

12 (10, 19.3) 2.8 (3, 7) 24 (9.2, 9.8) 2.2 (2, 4) 

13 (13.6, 8) 2.7 (3, 6) 25 (15.5, 4) 0.9 (3.5, 5) 

14 (19.1, 8.5) 2.2 (2, 4) 26 (19.9, 11.8) 1.7 (1.5, 3) 

(1) Area division of customers 

Based on the real-time information, the researcher once again divides the 

customers into different areas. Customers’ membership degree and classification are 

as shown in Table 6. 

Table 6. Membership degree and initial classification of the distribution scheme in real-time optimization. 

No. 
Membership 

degree to P1 

Membership 

degree to P2 

Membership 

degree to P3 
Classification No. 

Membership 

degree to P1 

Membership 

degree to P2 

Membership 

degree to P3 
Classification  

1 0.786 0.761 0.453 P1,P2 15 0.537 0.704 0.759 P2, P3 

3 0.459 0.774 0.768 P2,P3 17 0.484 0.845 0.671 P2 

7 0.9 0.677 0.423 P1 18 0.423 0.791 0.786 P2, P3 

9 0.657 0.625 0.719 P1, P3 21 0.86 0.714 0.426 P1 

10 0.739 0.77 0.491 P2, P3 22 0.872 0.636 0.492 P1 

11 0.517 0.81 0.673 P2 23 0.743 0.72 0.537 P1, P2 

12 0.547 0.824 0.629 P2 24 0.608 0.778 0.614 P2 

13 0.489 0.667 0.845 P3 25 0.561 0.628 0.81 P3 

14 0.459 0.636 0.905 P3 26 0.45 0.666 0.884 P3 

According to the above calculation results, the researchers conducted a secondary 

classification of customers 1,3,9,10,15,18,23. The results of calculation according to 

Equation (2) are shown in Table 7. After adding new customers, customer 15 has a 

relatively high degree of attachment to distribution depot P2, so distribution depot P2 

is assigned to provide services for this customer.  

Table 7. Secondary classification of the distribution scheme in real-time optimization. 

No.  Membership degree to P1 Membership degree to P2 Membership degree to P3 Classification  

1 0.786 0.761 0.453 P1 

3 0.459 0.774 0.768 P2 

9 0.657 0.625 0.719 P3 

10 0.739 0.77 0.491 P1 

15 0.537 0.704 0.759 P2 

18 0.423 0.791 0.786 P2 

23 0.743 0.72 0.537 P2 
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Through calculation, customers of P1 distribution depot include 1, 7, 10, 21, 22; 

P2 customers include 3, 11, 12, 15, 18, 23, 24; The customers of P3 are 9, 13, 14, 25, 

26.  

(2) Real-time optimized distribution routes 

By using the plant growth simulation algorithm, the researcher reconstructed the 

distribution route, and the distribution scheme obtained is as shown in Table 8, and 

the optimal solution obtained is as shown in Figure 1.  

Table 8. Real-time optimized distribution scheme. 

Distribution 

depot 
Route  

Total 

length 

Transportation 

cost 

Transportation 

volume 

Loading 

rate 

Customers’ 

satisfaction 

P1 
P1-8-10-1-21-P1 18.52 192.6 9.7 t 97% 85% 

P1-5-6-22-7-P1 16.97 184.85 9.3 t 93% 88% 

P2 
P2-4-12-17-3-18-P2 23.15 215.75 9.9 t 99% 75% 

P2-23-24-15-11-P2 17.11 185.55 7.3 t 73% 85% 

P3 
P3-19-16-26-14-P3 14.07 170.35 9.4 t 94% 89% 

P3-20-25-9-13-P3 28.79 243.95 8.8 t 88% 65% 

 

Figure 1. Best route. 

The total length of all driving routes of each distribution depot is 118.61 km, the 

transportation cost is 1786.1 yuan, the loading rate is 90.67%, and the customers’ 

satisfaction is 81%. 

4.3. Comparative analysis 

(1) Comparison with the static distribution scheme 

After dynamic events occur, if the traditional static vehicle scheduling method is 

used, the scheduling scheme is as shown in Table 9. 
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Table 9. Static scheduling method. 

Distribution 

depot 
Route  

Total 

length 

Transportation 

cost 

Transportation 

volume 

Loading 

rate 

Customers’ 

satisfaction 

P1 

P1-8-10-1-P1 16.77 267.7 8.1 t 81% 80% 

P1-5-6-2-7-P1 18.95 289.5 8.4 t 84% 78% 

P1-22-21-P1 12.21 222.1 4.4 t 44% 85% 

P2 
P2-4-12-17-3-11-18-P2 25.17 351.7 8.6 t 86% 63% 

P2-23-24-P2 12.23 222.3 4.7 t 47% 86% 

P3 

P3-14-16-19-P3 13.65 236.5 8.2 t 82% 85% 

P3-20-9-15-13-P3 27.89 378.9 9.7 t 97% 64% 

P3-24-25-P3 18.89 288.9 2.6 t 26% 75% 

The total length of all routes of each distribution depot is 145.76 km, the 

transportation cost is 2257.6 yuan, the loading rate is 68.38%, and the customer 

satisfaction rate is 77%. 

By comparing the real-time optimal scheduling scheme with the static scheduling 

scheme, it can be seen that when dynamic events occur, the multi-distribution depot 

dynamic vehicle scheduling model based on real-time information established in this 

paper can reduce the total distribution cost by 471.5 yuan, reduce the total distribution 

distance by 27.15 km, and increase customer satisfaction by 4%.  

(2) Comparison with the genetic algorithm 

In order to further analyze and improve the performance of the plant growth 

simulation algorithm, the researcher compared its calculation results with those of the 

genetic algorithm. The initial population of the genetic algorithm was set as 20, the 

crossover probability was set as 0.5, and the mutation rate was set as 0.01. The 

experimental comparison results are as shown in Table 10. The total driving distance 

of the improved plant growth simulation algorithm was reduced by 11.01 km, the total 

distribution cost was reduced by 210.2 yuan, and the customer satisfaction was 

increased by 2%. The convergence of the improved PGSA and GA is referenced in 

Figure 2. 

Table 10. Comparison of the calculation results of the improved plant growth simulation algorithm and the genetic 

algorithm. 

Algorithm  Total driving distance Total cost Loading rate Customers’ satisfaction 

PGSA 118.61 1786.1 90.67% 81% 

GA 129.63 1996.3 77.71% 79% 

 

Figure 2. Convergence of the improved PGSA and GA. 
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5. Conclusions 

This study focuses on the electric vehicle scheduling problem of multiple 

distribution depots affected by dynamic events. It mainly studies how to use real-time 

information to coordinate the electric vehicle scheduling of multiple distribution 

depots under the circumstances of dynamic events such as changes in the number of 

customers, changes in demand, traffic jams, and vehicle breakdowns. Aiming at the 

highest customer satisfaction and the lowest distribution cost, this paper constructs a 

multi-distribution depot electric vehicle dynamic scheduling model based on real-time 

information. By introducing virtual customers and classifying customers with fuzzy 

membership degrees, this study transforms the dynamic vehicle scheduling problem 

of multi-distribution depots under real-time information into the vehicle scheduling 

problem of multiple static single distribution depots, making the problem better match 

the real-life distribution [31]. In this study, the improved plant growth simulation 

algorithm was used to optimize the model in real time, and the optimal distribution 

scheme was obtained. On this basis, the results are compared with static scheduling 

schemes and genetic algorithms. The comparison results have shown that the model 

and algorithm proposed in this study can reduce the distribution cost quickly and 

effectively and improve customer satisfaction. 

The improved model and algorithm in this paper have limitations in practical 

applications, particularly under extreme weather, traffic congestion, or emergencies, 

which may affect optimization effectiveness. The model primarily targets uniform 

electric vehicle models and does not account for performance differences among 

various vehicle types, limiting its applicability in diverse fleets. To enhance 

adaptability for distribution centers of different scales, optimization strategies can 

include introducing adaptive mechanisms for real-time parameter adjustments and 

expanding the model to incorporate different vehicle characteristics. From a 

biomechanics-related perspective, future research could also analyze the mechanical 

stress and energy consumption differences of different vehicle types in the distribution 

process. Future research should analyze the applicability of models for small, medium, 

and large distribution centers, addressing their unique challenges. By developing 

specialized optimization strategies tailored to each scale, overall delivery efficiency 

and customer satisfaction can be significantly improved. 
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