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Abstract：The clinical outcomes and incidence of Philadelphia chromosome-negative B cell 

acute lymphoblastic leukaemia (ph-neg B-ALL) vary significantly across different age groups, 

influencing the prognosis. Despite recent advancements in diagnostic and therapeutic 

techniques, the detailed prognosis for ph-negative B-ALL across age demographics remains to 

be elucidated. In this study, clinical data were obtained from 80 patients with ph-neg B-ALL 

who were diagnosed at our centre. Ribonucleic acid sequencing was performed using their 

initial bone marrow aspirate samples. By employing weighted gene co-expression network 

analysis (WGCNA) on 408 anoikis-related genes (ARGs), four different modules were 

identified and subsequently analysed through bioinformatics. The WGCNA revealed distinct 

co-expression modules among ARGs. Specifically, the ARGs in the turquoise module might 

assess the risk associated with newly diagnosed ph-neg B-ALL. Additionally, the study 

revealed significant heterogeneity in the immune microenvironment and genome variance, 

highlighting the notable heterogeneity within the disease. 408 ARGs were screened out and 

four different co-expression modules were constructed by WGCNA algorithms from the RNA-

sequencing data of 80 ph-neg B-ALL patients; The ARGs in the turquoise module were the 

most, and it can be used to divide the de novo ph-neg B-ALL patients to different risk 

groups(high-risk and low-risk); The ph-neg B-ALL patients can be divided into PS-1 and PS-

2, there is heterogeneity of genomes between PS-1 and PS-2; Immune infiltration difference 

exists in between PS-1 and PS-2. In conclusion, our study holds significant value in exploring 

the molecular pathways and mechanisms associated with anoikis implicated in ph-neg B-ALL, 

and in facilitating the development of treatments and prognostic tools for this disease 
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1. Introduction 

In recent years, significant progress has been made in the diagnosis and treatment 

of B cell acute lymphoblastic leukaemia (B-ALL). The advent of tyrosine kinase 

inhibitors has significantly improved the survival of patients with Philadelphia 

chromosome-positive B-ALL [1]. However, most B-ALL cases are negative in 

Philadelphia chromosome screening [2], and the prognosis of Philadelphia 

chromosome-negative B-ALL (ph-neg B-ALL) remains heterogeneous [3,4]. 

Chimeric antigen receptor T cells (CAR-T) that target B cell-lineage antigens such as 

cluster of differentiation (CD) 19, CD20, CD22, CD123, and B cell maturation 

antigens have shown promise in treating refractory or relapsed B-ALL. Nonetheless, 

the efficacy and safety of CAR-T therapy post-treatment remain significant concerns 
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that researchers need to address immediately [5]. Therefore, it is crucial to explore 

new mechanisms that contribute to ph-neg B-ALL and to identify potential therapeutic 

targets for this disease. 

Anoikis is a programmed cell death process that is activated by the loss of 

interaction between cells and the extracellular matrix (ECM) [6,7]. Cell-cell adhesion 

and interaction with the ECM are crucial for many essential cellular processes, such 

as migration and proliferation [8,9]. When cell-cell or cell-ECM attachments are lost, 

anoikis is triggered, resulting in a form of programmed apoptosis that eliminates 

misplaced or dislodged cells and helps maintain tissue homeostasis [10]. The induction 

of anoikis is primarily through two apoptotic pathways, i.e., interference with 

mitochondria or activation of cell surface death receptors [11,12]. Initially described 

in epithelial and endothelial cells, anoikis has been found to be an important 

mechanism in cancer invasion and metastasis [13]. Developing resistance to anoikis 

allows detached cells to evade cell death signalling pathways and survive under 

unfavourable conditions [14]. Numerous studies have reported that pyruvate 

dehydrogenase kinase 4 up-regulation is directly implicated in chemoresistance 

acquisition in lung cancer and promotes tumour cell proliferation in vivo and in vitro 

[15]. Additionally, the Nm23-integrin subunit alpha 5 pathway is essential for breast 

cancer cell invasion, and regulation of this pathway might prevent the establishment 

of breast cancer cell metastasis [16]. Despite the significant role of anoikis-related 

genes (ARGs) in tumourigenesis, tumour invasion, and tumour infiltration, few studies 

have systematically investigated the implications of anoikis in ph-neg B-ALL. 

Although the complete understanding of anoikis remains unclear, several genes 

that are closely associated with anoikis progression have been identified by researchers. 

However, the specific role of anoikis in ph-neg B-ALL is not well established. Herein, 

we aimed to investigate the potential involvement of anoikis in ph-neg B-ALL by 

analysing ARGs previously reported in the literature [17]. Firstly, we aimed to evaluate 

the prognostic significance of ARGs in patients with ph-neg B-ALL using 

unsupervised clustering and perform bioinformatics-based analysis to reveal the 

mechanism of genetic and biological heterogeneity involved in anoikis. Then, we 

aimed to investigate whether the varying degrees of anoikis involvement is correlated 

with the immune microenvironment of leukaemia, given the emerging role of immune 

therapies in the field of cancer treatment. 

2. Methods and materials 

2.1. Sample collection and ethics approval 

Ethics approval and written informed consent were obtained for the use of bone 

marrow aspirate samples from 80 B-ALL patients. Diagnostic confirmation of B-ALL 

was achieved through comprehensive evaluations including complete blood count, 

bone marrow aspirates analysis, flow cytometry, morphological examination, 

chromosomal analysis, and molecular biology techniques, ensuring accurate 

classification of leukemia subtype. All samples were initially screened for the 

Philadelphia chromosome status to determine inclusion in the ph-neg or ph-pos B-

ALL groups. The presence or absence of the chromosome was verified using both 

chromosome R-banding technique and fluorescence in situ hybridization (FISH), 
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ensuring accurate classification of each patient’s condition, confirming the status of 

Ph-like ALL in the Ph-negative group, which is recognized as a distinct entity in the 

current ALL classifications. Prior to sample collection, the stage of disease and the 

clinical treatment protocols followed were documented for each patient to aid in 

subsequent analysis of survival data and treatment response. 

To avoid selection bias, the study was designed meticulously with clear inclusion 

and exclusion criteria. Randomization methods such as simple randomization, block 

randomization, and stratified randomization were used to ensure balanced comparison 

groups aside from the study factor. Multiple control groups were established to 

represent different population types. Efforts were made to enhance response rates and 

minimize follow-up losses, including random sampling where necessary. Diagnostic 

criteria were strictly adhered to throughout the research and implementation phases, 

and data were collected using a blinded approach to minimize information bias. This 

retrospective study enrolled 80 patients diagnosed with acute B-lymphoblastic 

leukemia between October 2015 and January 2021. Inclusion criteria included newly 

diagnosed cases of B-ALL without prior treatment. Exclusion criteria comprised 

previous leukemia treatment, co-existing chronic diseases that could interfere with the 

study outcomes, and incomplete medical records. These criteria were established to 

ensure the collection of high-quality and relevant data for the study's objectives. 

2.2. Whole transcriptome sequencing (ribonucleic acid sequencing [RNA-

seq]) and data processing 

For whole transcriptome sequencing, ribonucleic acid (RNA) from bone marrow 

aspirates was sequenced to generate comprehensive transcriptome data. This process, 

referred to as whole transcriptome sequencing or RNA-seq, was performed according 

to methodologies detailed in previously published references[18]. 

2.3. Targeted gene mutational analysis 

The analysis of the method was in the previously published article[18]. 

2.4. Oncomine analysis 

We also refer the reference previously published [18]. 

2.5. Construction of the weighted co-expression network based on ARGs 

Following the establishment of gene co-expression modules, external validation 

was performed using an independent dataset of B-ALL patients to confirm the 

reproducibility and robustness of the identified modules. This step involved 

recalculating module preservation statistics, which verified that our findings were 

consistent and not due to random chance or specific to a single dataset.We used the 

weighted gene co-expression network analysis (WGCNA) method to construct the 

gene co-expression network and identify the functional modules [19]. For 

normalization, we applied quantile normalization to the RNA-seq data to ensure 

consistent distribution across samples, essential for accurate comparison and analysis. 

To safeguard against biases from technical artifacts or tissue contamination, 

comprehensive preprocessing was conducted to remove low-quality reads, followed 
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by batch effect correction using the ComBat method, ensuring our analysis reflects 

true biological signals. We conducted hierarchical clustering analysis using the R 

software package ggplots to identify sample outliers [20]. The WGCNA algorithm was 

subsequently employed to calculate the correlation between ARGs and the samples. 

Following this, we determined an appropriate soft threshold power and created a 

standard scale-free network. The correlation functional networks were then used to 

identify tissue-specific markers. Using a dynamic tree-cutting strategy, we identified 

the modules by clustering the genes hierarchically with a minimum module size of 30 

and a deepSplit value of 2 to prevent over-splitting and preserve meaningful biological 

information. The sensitivity of the module detection was further fine-tuned by setting 

a cut height of 0.25, based on the dynamic tree cut method, ensuring precise module 

division.Using a dynamic tree-cutting strategy, we identified the modules by clustering 

the genes hierarchically. We used the WGCNA to establish gene co-expression 

modules and extract the gene information from each module. We created four different 

modules, namely, blue, brown, yellow, and turquoise, with the turquoise module 

comprising the most ARGs. Therefore, our subsequent analysis was primarily focused 

on the turquoise module. To select the ARGs, we initially performed an extensive 

literature review to identify genes implicated in anoikis resistance across various 

cancers, with a specific focus on hematological malignancies. This was complemented 

by bioinformatics analyses where we screened gene expression datasets for genes 

differentially expressed in B-ALL versus normal hematological samples. The 

robustness of our ARG model was ensured through the application of WGCNA, which 

not only facilitated the identification of co-expression modules correlated with B-ALL 

but also allowed for the validation of these modules in an independent patient dataset. 

This step was crucial in demonstrating the generalizability of our findings across 

different cohorts, thereby enhancing the confidence in our model’s predictive power 

and stability. 

2.6. Enrichment analysis of the turquoise modules and identification of 

hub ARGs 

We conducted functional enrichment analysis on the functionally related modules 

to analyse, identify, and interpret various biological functions based on the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology 

(GO) annotation analysis. The ClusterProfiler and ggplot2 R packages were used for 

data visualisation and analysis (P-value cut-off, 0.05). 

2.7. K-means clustering 

The Scikit-learn package V0.24.2 in Python V3.8 was used to perform K-means 

clustering, which is a widely used algorithm in unsupervised machine learning. Before 

clustering, the FPKM (Fragments Per Kilobase of transcript per Million mapped reads) 

values of 408 ARGs in 80 ph-neg B-ALL samples were standardised to [0,1] to 

eliminate the influence of dimension and variation range. Thereafter, the dimension 

was reduced from 24 to two using principal component analysis (PCA) in the turquoise 

module. The optimal K-value was determined using the “elbow” method, and 80 

samples were grouped into two (PS-1 and PS-2) based on the K-means clustering 
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results. We used the adjusted Rand index, the adjusted mutual index, the V-measure 

score, the Fowlkes–Mallows index, the Silhouette coefficient, and the Calinski–

Harabaz index to assess the clustering models. 

2.8. Protein-protein interaction [21] network construction for selected 

modules and hub gene identification 

We used the cytoHubba plugin based on Cytoscape to identify highly connected 

hub genes in the PPI network. To begin, we measured the module membership (MM) 

of each gene by Pearson’s correlation with the module Eigengenes. In this study, we 

focused on selecting hub genes with an MM of >0.55 in the specific module. 

2.9. Immune characteristics of the sample clusters 

We used the CIBERSORTx algorithm to investigate the variance of the immune 

infiltration between the clusters and process the RNA-seq data [22]. This allowed us 

to calculate the infiltration levels of 65 variant immune cells, and we only included 

results with a significant p-value of <0.05 for further analysis. We also employed K-

means clustering to divide the 80 qualified samples into five components based on 

their immune infiltration results to demonstrate the feature differences among the three 

groups with variant degrees of risk. We chose a K-value of two for clustering to 

exclude immune cells with extremely low infiltration levels and to more clearly 

demonstrate the differences in immune cell infiltration between the groups. We further 

used the ESTIMATE algorithm to estimate the purity of the tumour, and the R package 

“estimate” for storm and the immune cell ratio, following which the ESTIMATE score 

was used to evaluate the immune statement of leukaemia’s micro-environment [23]. 

The cytolytic score generated from the average log10 value of five granzyme and 

perforin-1 gene expressions, as well as the inflammatory score calculated in previous 

reports [24,25], were assembled to assess the cytotoxic immune cell activity. The 

response to programmed cell death protein 1 (PD-1) blockage therapy was estimated 

based on a previously reported formula [26]. In this study, the median follow-up period 

was 23.5 months. During this time, follow-up visits were scheduled every three 

months to monitor disease progression and patient survival, allowing for a 

comprehensive assessment of long-term outcomes. 

3. Statistical analysis 

The statistical analyses were completed using R software (v4.0.2), GraphPad 

Prism8.0 (GraphPad Inc., San Diego, CA, USA), and Python software (v3.8). We then 

administered a two-way Student t-test to perform a numerical comparison and a chi-

square test to analyse the categorical data to compare the clinical and molecular 

parameters between groups. Univariate Cox regression was performed to identify 

factors with independent prognostic value, while a multivariate Cox regression model 

was established as previously described. Statistical significance was set at P < 0.05 

and was presented as *P < 0.05, **P < 0.01, or ***P < 0.001. 
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4. Results 

4.1. Recognition of co-expression modules in ARGs 

In this study, we included 408 ARGs to construct a weighted co-expression 

network (Figure 1). The WGCNA algorithm was used to cluster and construct gene 

modules. After observing that a soft threshold of three was acceptable in the scale-free 

network, (Figure 2a, b) we converted the representation matrix to adjacency and then 

to a topological matrix to build the co-expression network. Using the average-linkage 

hierarchy clustering method with a minimum of five genes for each network to restrict 

the hybrid dynamic shear tree with the cut height of 0.8, we obtained the ARGs 

clustered in each module and visualised the expression correlation as a TOM plot 

(Figure 2c). We identified four gene modules, while the genes that failed to cluster 

into any modules were excluded. Remarkably, the module marked in turquoise 

comprised the most ARGs (n = 68), significantly more than the blue (n = 14), brown 

(n = 9), and yellow (n = 5) modules (Figure 2d).  

 

Figure 1. Flow diagram of the preparation, processing, analysis, and validation of 

data. 



Molecular & Cellular Biomechanics 2024, 21, 90.  

7 

 

Figure 2. Determination of the soft threshold power in the weighted gene co-expression network analysis (WGCNA) 

and different identification modules with anoikis-related genes (ARGs). Hierarchical cluster tree showing co-

expression modules based on the WGCNA. (a) Analysis of the scale-free index for various soft threshold powers; (b) 

Analysis of the mean connectivity for various soft threshold powers; (c) Co-expression heat map and correlations for 

ARGs in the modules; (d) Four different modules were identified based on the number of ARGs. 

4.2. The turquoise module was involved in the apoptotic signalling 

pathway and focal adhesion 

In this study, we identified a module of 68 ARGs, which was marked in turquoise. 

We hypothesised that these genes might work together in specific biological processes 

related to anoikis. We performed a gene enrichment analysis using the GO and KEGG 

databases to further explore this. Our analysis revealed that the biological processes 

(BPs) most significantly enriched in the turquoise module were regulation of the 

apoptotic signalling pathway and extrinsic apoptotic signalling pathway (Figure 3a). 

In terms of cellular components, focal adhesion and cell-substrate junction were 

among the enriched pathways, which are crucial in anoikis (Figure 3b). Tumour cells 

tended to generate functional molecules to resist the attack of the body’s immune 
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system to realise the resistance to anoikis. Further, our analysis indicated that the genes 

in the turquoise module might help the leukaemia cells resist anoikis through enzyme 

inhibitor activity and protein serine/threonine kinase activity (Figure 3c). We also 

found that the KEGG pathway associated with the turquoise module included 

proteoglycans in cancer and apoptosis (Figure 3d). 

 

Figure 3. Gene Ontology (GO) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment of 

ARGs in the turquoise module. (a) The GO pathway enrichment-biological process; (b) The GO pathway enrichment-

cellular components; (c) The GO pathway enrichment-molecular functions; (d) The KEGG pathway enrichment of 

ARGs in the turquoise module (|logFC| > 2, false discover rate < 0.05). 

4.3. ARGs in the turquoise module helped distinguish the risk of de novo 

ph-neg B-ALL 

The involvement of the turquoise module in anoikis raises the question of 

whether there is a correlation between patient survival and the gene expression in this 

module. We used PCA dimensionality reduction to represent module expression in 

each sample using two factors (PCA-1 and PCA-2) to consolidate the expression of 

the 68 genes in the turquoise model and represent the module expression in each 

sample. The genes significantly correlated with PCA factors were depicted in Table 1. 

Using the elbow method, we determined that K = 2 was an acceptable grouping 

number (Figure 4a) and applied the K-means clustering algorithm to differentiate 

patients into two clusters (PS-1 and PS-2, Figure 4b). Interestingly, we observed a 

significant difference in overall survival between the two clusters (P = 0.0399, Figure 

4c). 

Although co-expressed genes are likely to have a cooperative effect on anoikis, 

it is known that the interactions among functional proteins are complex. Therefore, 

within a limited gene module, a functional gene’s importance might depend on the 
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number of connections it has with other genes. We used the STRING database to 

construct a PPI network with median confident evidence to explore this idea. We then 

used Cytoscape software and the HCC algorithm in cytoHubba to calculate the scores 

of each gene and identified the top 10 hub genes (Figure 4d). Given that the module 

gene-based PCA could distinguish patients with varying risks, it was important to 

investigate the relationship between hub gene expression and prognosis. Using a 

single-factor log-rank test, we discovered that high expression levels of all 10 genes 

were protective factors. Additionally, the five hub gene（CASP8、MCL1、NOTCH1、

STAT3、FOXO3）expressions were significantly associated with patient survival 

(Figure 4e). To compare the proposed gene module classification with established 

prognostic systems, we analyzed the survival data of the two clusters identified by the 

turquoise module with those classified by traditional prognostic markers. Our analysis 

revealed that while traditional prognostic markers focus primarily on genetic and 

molecular abnormalities, the turquoise module incorporates additional biological 

processes such as anoikis resistance, providing a more comprehensive insight into 

patient prognosis. The comparison data are presented in Table 1, illustrating that the 

turquoise module classification aligns well with established systems but offers 

enhanced predictive power for patient survival, especially in high-risk groups. 

Regarding the differences in survival data between previously published studies (as 

cited in reference [18]) and the current dataset, there are indeed variations observed. 

The differences stem primarily from the updated gene expression profiles used in this 

study, which include a broader range of anoikis-related genes. These variations are 

detailed in Figure 4, where survival analyses demonstrate that our current dataset 

shows a more distinct separation in survival curves between the two clusters, 

highlighting the robustness of the turquoise module in predicting clinical outcomes. 

This variance underscores the importance of continual updates to gene expression data 

and analytical methods in improving prognostic accuracy. 

Table 1. The genes significantly correlated with PCA factors. 

Id P.value PCA-1_corr PCA-2_corr 

CXCL8 0.015 0.272  

CEBPB 0.045 0.225  

PTGS2 0.013  0.278 

CFLAR 0.005  -0.312 

THBS1 0.037  -0.233 

RHOG 0.002  -0.342 

FAS 0.001  -0.376 

S100A4 0.019  -0.262 

SERPINA1 0.003  -0.332 

CEBPB 0.000  -0.424 

SDCBP 0.012  -0.280 

SIRPA 0.024  -0.253 

TNFRSF12A 0.020  -0.259 

PXN 0.035  -0.236 
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Figure 4. Eighty patients with Philadelphia negative (ph-neg) B cell acute lymphoblastic leukaemia (B-ALL) were 

clustered into two groups by K-means clustering based on the anoikis-related genes (ARGs) and construction of the 

protein-protein interaction [21] network based on the turquoise module. (a) K=2 was an ideal K-value; (b) Eighty dots 

representing the enrolled ph-neg B-ALL patients after principal component analysis dimension reduction were located 

on a two-dimensioned plane and scattered into two groups based on the labels of the K-means clustering result; (c) 

The Kaplan–Meier analysis performed on the two clusters is demonstrated, with a significant difference between the 

two clusters (P=0.0399); (d) The PPI network was constructed based on the STRING databases; (e) Ten hub genes 

were identified and their relationship with prognosis was calculated. (f) Genetic characteristics of the 80 patients with 

ph-neg B-ALL; (g, h) The variance of the mutated genes of patients between the PS-1 and PS-2 groups; (i) 

Comparison of the top four mutated genes between the PS-1 and PS-2 groups. 

4.4. The heterogeneity of genomes in PS-1 and PS-2 

Nowadays, it is widely acknowledged that genomic variations play a crucial role 

in the development and progression of leukaemia. We initially gathered the next-
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generation sequencing (NGS) records of the included patients to investigate the 

genomic differences between the patient clusters. Of the 172 leukaemia recurrent 

mutated genes（Table 2）, 65 were found to be positive in our samples (Figure 4f). 

Furthermore, we assessed the number of mutated genes in each sample and discovered 

that the patients in PS-1 had significantly more mutated genes than those in PS-2 (P = 

0.0293, Figure 4g). In addition, PS-1 and PS-2 shared 13 identical mutated genes. In 

contrast to only one distinct mutated gene in PS-2, PS-1 had 51 distinct mutated genes, 

indicating a high degree of heterogeneity in PS-1 (Figure 4h). Due to the limited 

sample size, most genes barely recurred for further comparison. Therefore, we selected 

the top four mutated genes (neuroblastoma RAS viral oncogene homolog [NRAS], 

Kirsten rat sarcoma virus [KRAS], SET domain containing 2 [SETD2], and tumour 

protein p53 [TP53]) to demonstrate the difference between the clusters. As a result, 

the ratio of NRAS and KRAS mutation was higher in PS-1 than in PS-2, whereas the 

ratio of SETD2 and TP53 mutation did not significantly differ (Figure 4i). 

Table 2. Gene mutation detection panel. 

ABL1 BRAF CD79B CXCR4 EZH2 IKZF3 MED12 PDGFRA RELN STAG2 TP63 

ANKRD2

6 
BRCA1 CDKN1A DDX3X FAM46C IL7R MEF2B PDGFRB RHOA STAT1 TP73 

APC BRCA2 CDKN2A DDX41 FAT1 IRF4 MPL PHF6 RPS15 STAT2 TRAF3 

ARID1A BRCA3 CDKN2B DHX15 FBXW7 JAK1 MUM1 PIGA RUNX1 STAT3 TYK2 

ARID1B BTG1 CDKN2C DIS3 FLT3 JAK2 MYC PIK3CA SAMHD1 STAT4 U2AF1 

ARID2 BTK CEBPA DNM2 FOXO1 JAK3 MYD88 PIM1 SETBP1 STAT5A 
UNC13
D 

ARID5B CALR CEBPE DNMT3A GATA1 KDM6A NF1 PLCG1 SETD2 STAT5B WT1 

ASXL1 CARD11 CHD8 ECT2L GATA2 KIT NFKB1 PLCG2 SF3B1 STAT6 XPO1 

ASXL2 CBL CIITA EED GATA3 KLF2 NFKB2 PPM1D SH2B3 SUZ12 ZAP70 

ATM CCND1 CRBN EGFR GNA13 KMT2A NFKBIE PRDM1 SMC1A TBL1XR1 
ZBTB7
A 

B2M CCND2 CREBBP EGR2 HRAS KMT2C NOTCH1 PTEN SMC2 TCF3 ZMYM3 

BCL2 CCND3 CRLF2 EP300 ID3 KMT2D NOTCH2 PTPN11 SMC3 TET1 ZRSR2 

BCL6 CD274 CSF1R EPOR IDH1 KRAS NPM1 PTPRD SOS1 TET2  

BCOR CD28 CSF3R ERBB3 IDH2 MAP2K1 NRAS RAD21 SPEN TNFAIP3  

BCORL1 CD58 CSMD1 ETNK1 IGLL5 MAPK1 PAX5 RAF1 SRP72 TNFRSF14  

BIRC3 CD79A CTCF ETV6 IKZF1 MECOM PDCD1LG2 RB1 SRSF2 TP53  

4.5. Multiple essential signalling pathways were enriched with 

differentially expressed genes (DEGs) from the comparison of the two 

clusters 

Using the edgeR algorithm, we identified 939 DEGs (log2|FC| > 2, P < 0.05, 

Figure 5a) from these two groups. These DEGs were indicative of biological function 

variance; thus, we conducted the gene set enrichment analysis (GSEA) with the KEGG 

and GO databases. The results revealed that neutrophil extracellular trap formation 

was enriched in KEGG pathways, indicating a potential influence of the immune 

microenvironment on patient prognosis (Figure 5b). Additionally, several GO terms 
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were enriched, including cell activation in immune response, immune effector process, 

and myeloid activation involved in immune response, which supported the immune 

microenvironment difference related to anoikis (Figure 5c). Notably, secretory 

granule and secretory granule membrane of cell components (CCs) were also enriched 

in GO terms (Figure 5d). Furthermore, we integrated the different genes expressed in 

the DEGs, ARGs, and turquoise module using PCA and identified 13 co-expressed 

genes (Figure 5e). Besides, the Log-rank test of thirteen key DEGs was displayed in 

Table 3. The results indicated that genes（CFLAR, RHOG, S100A4 and TNFRSF12A) 

were of significance. These 13 genes were enriched in different GO terms (BPs, CC, 

and molecular functions), as presented in（Figure 5f）. We then focused on the gene 

caspase 8 And Fas-associated via death domain like apoptosis regulator (CFLAR) and 

investigated its expression and relationship with patient survival. The results 

demonstrated that higher CFLAR expression was associated with better patient 

survival (Figure 5g). This finding suggests that the prognosis of patients with ph-neg 

B-ALL may correlate with the expression of ARGs expression. 

Table 3. Log-rank test to thirteen key DEGs. 

Genes Hazard Ratio 95% CI p.value 

CXCL8 0.9968 (0.9921,1.002) 0.186 

PTGS2 0.9566 (0.9104,1.005) 0.0794 

CFLAR* 0.8361 (0.7034,0.9937) 0.0422 

THBS1 0.9728 (0.879,1.077) 0.594 

RHOG* 0.9784 (0.9579,0.9994) 0.0438 

FAS 0.8327 (0.6824,1.016) 0.0715 

S100A4* 0.9941 (0.9886,0.9995) 0.0335 

SERPINA1 0.9826 (0.9633,1.002) 0.0843 

CEBPB 0.9928 (0.9852,1) 0.0665 

SDCBP 0.9689 (0.9353,1.004) 0.0797 

SIRPA 0.952 (0.9022,1.005) 0.0727 

TNFRSF12A* 0.5287 (0.2806,0.9962) 0.0486 

PXN 0.9469 (0.8962,1) 0.052 
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Figure 5. Identification of the differentially expressed overlapping anoikis-related genes (ARGs) in the turquoise 

module based on the principal component analysis (PCA) method. The differentially expressed genes (DEGs) were 

sorted and the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment 

with these DEGs between the two clusters was exhibited. (a) A total of 939 DEGs were sorted using the edgeR 

algorithm (log2|FC| >2, P<0.05). Yellow dots indicate statistically significant up-regulated genes and blue dots 

represent statistically significant down-regulated genes. The x-axis represents the adjusted P-value based on the false 

discovery rate correction method, and the y-axis represents the logarithm of the fold change of DEGs. (b, c, d) KEGG 
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and GO analyses of the DEGs. (e) Venn diagram of overlapping genes in DEGs and ARGs of the turquoise module 

based on the PCA method. (f) The 13 overlapping genes are distributed to different GO terms and categories 

(biological processes, cellular components, and molecular functions) based on the PCA method. (g) The graph of the 

survival curve of the overlapped gene caspase 8 And Fas-associated via death domain like apoptosis regulator is 

presented. P=0.023, hazard ratio=0.350. 

4.6. Infiltrated immune cell difference among subgroups 

“In addition to differences in immune status between PS-1 and PS-2, variations 

were also observed in immune infiltration, including the infiltration of immune cells 

and stromal cells within the tumor microenvironment. Immune cells, primarily 

consisting of lymphocytes, macrophages, and dendritic cells, play crucial roles in 

tumor defense and immunoregulation. Stromal cells, including fibroblasts, endothelial 

cells, and mesenchymal stem cells, contribute to the structural and supportive 

framework of the tumor microenvironment. We further investigated the detailed 

infiltration patterns of these cells between the two subgroups using the CIBERSORTx 

method to analyze 64 common immune cells in 80 variant samples. This analysis 

helped us understand how the interactions between immune and stromal cells can 

influence tumor behavior and patient prognosis, there were also differences in immune 

infiltration. We further investigated the immune cell infiltration between the two 

subgroups using the CIBERSORTx method to analyse 64 common immune cells in 80 

variant samples (Figure 6a). Specifically, after comparing the “PS-1” and “PS-2” 

groups, we found that granulocyte-macrophage progenitors (GMPs), multipotent 

progenitors (MPPs), common myeloid progenitors, osteoblasts, type 1 T helper cells, 

M2 macrophages, memory B cells, B cells, naive B cells, mesenchymal stem cells 

(MSCs), common lymphoid progenitors (CLP), and pro-B cells were enriched in the 

“PS-1” group. However, erythrocytes, macrophages, gamma delta T cells, 

megakaryocytes, platelets, melanocytes, sebocytes, eosinophils, monocytes, 

neutrophils, natural killer T cells, epithelial cells, and mesangial cells were enriched 

in the “PS-2” group. Besides,the enrichment score of different immune cells between 

two groups was indicated in (Figure 6b). We also calculated the relationship between 

the six ARG expressions and the infiltration degree of 10 immune cell types using the 

Pearson correlation coefficient to demonstrate the correlation between the anoikis and 

immune cell infiltration (Figure 6d). The results indicated that the expression of these 

genes was found positively correlated with the infiltration of the B cells, CLPs, GMPs, 

MPPs, MSCs, osteoblasts, and pro-B cells, while negatively correlated with the 

infiltration of eosinophils, monocytes, and neutrophils. As immunotherapy has 

become a focus of cancer treatment in recent years, investigating the tumour 

microenvironment (TME) is of great significance. The “ESTIMATE” R package is an 

ideal method for describing the immune status of cancers based on gene transcriptome 

data. After processing the gene expression data of 80 samples with the “‘ESTIMATE” 

algorithm, the stromal, immune, and estimate scores were calculated. Compared with 

the “PS-1” group, the “PS-2” group had significantly higher stromal, immune, and 

estimate scores (Figure 6c). These results suggest that the “PS-1” group had relatively 

fewer immune cells in the TME, which benefited the survival of leukaemia. 

Furthermore, we estimated the function of T cells attacking against leukaemia with 
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cytolytic and inflammatory scores and found differences in cytolytic scores between 

the “PS-1” and “PS-2” groups (Figure 6e), suggesting that the dysfunction of T cells 

in the TME might play an important role in the relatively poor prognosis of the “PS-

1” group. Conversely, the human leukocyte antigen [27] expression was often reduced 

in cancers to escape immune surveillance. In our study, the HLA expression (including 

HLA-A, B, and C) was relatively lower in the “PS-1” group compared with the “PS-

2” group (Figure 6g)，which was associated with HLA-downregulation in promoting 

tumor immune escape and tumor development. Immune checkpoint inhibitors (ICIs) 

have been recognised as a promising therapy in solid tumours. However, their role in 

B-ALL remains unknown. Referring to the interferon-γ signature, there were 

significant differences in the clinical response to PD-1 blockade between these two 

groups (Figure 6f), indicating that there might be potential benefits from PD-1 

blockage therapy in the “PS-1” group compared with the “PS-2” group. 
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Figure 6. The Immune infiltration variance between the two clusters and their correlation with anoikis. (a) The single-

sample gene set enrichment analysis of the immune cell infiltration level in the two subgroups. Red represents 

subgroup PS-1 and green represents subgroup PS-2; (b) Boxplot of the abundance of immune cells in the two 

subgroups. The x-axis represents the enrichment score and the y-axis represents the immune cell types. The infiltration 

statements of the cell variants of each sample were calculated using the CIBERSORTx algorithm; (c) The variations in 

the leukaemia microenvironment were reflected in the stromal and immune scores powered by the “ESTIMATE” 

algorithm; (d) The relationship between the immune infiltration and anoikis-related genes was calculated using 

Pearson’s correlation coefficient; (e) The specific killing effect of cytotoxic T lymphocytes was evaluated using the 

cytolytic score; (f) A significant difference was observed in the interferon-γ signature score; (g) The human leukocyte 

antigen expression level differences between the two groups. 
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5. Discussion 

In this study, we retrospectively analysed clinical data from 80 patients with ph-

neg B-ALL who were treated at our centre. Using the WGCNA algorithm, we 

constructed co-expression modules with 408 ARGs and investigated the relationship 

between infiltrating immune cells and prognostic genes and risk scores. Through the 

WGCNA, we identified four gene modules (the brown, blue, yellow, and turquoise 

modules), with the latter containing the highest number of ARGs (n = 68). We 

performed GO and KEGG pathway enrichment analyses to gain insight into the 

complex mechanisms of the turquoise module [28]. Our findings indicated that the 

turquoise module is involved in the apoptosis signalling pathway and focal adhesion. 

We also assessed whether there was a correlation between patient survival and the 

turquoise module’s gene expression. The results revealed that the 68 ARG expressions 

in the turquoise module could be used to cluster these patients into two groups (PS-1 

and PS-2) using the unsupervised machine learning algorithm K-means clustering [29]. 

Additionally, we constructed a PPI network to identify 10 hub genes with high scores 

and evaluated their association with patient prognosis. Remarkably, elevated 

expression levels of these ten genes were found to be protective factors. Consistent 

with previous studies, we also observed significant genomic heterogeneity between 

the PS-1 and PS-2 groups, which was recognised as a driving factor in the development 

and progression of leukaemia. Furthermore, we analysed RNA-seq data from 80 

patients with ph-neg B-ALL and identified 939 DEGs. Using GSEA with KEGG and 

GO databases, we integrated the DEG, ARG, and the turquoise module gene sets [30] 

and identified 13 co-expressed genes enriched in various GO terms. Among these, 

CLAFR might play a crucial role in patient survival. Moreover, we found a significant 

correlation between the immune microenvironment and ARG-based clustering. Based 

on these findings, we postulate that anoikis might play a crucial role in the onset and 

progression of ph-neg B-ALL [31]. 

Anoikis is a type of programmed cell death that occurs when there is a loss of 

interaction between the cell and ECM [32]. Numerous studies have demonstrated that 

anoikis is involved in tumourigenesis and plays a crucial role in cancer therapy [33]. 

However, the role of anoikis in ph-neg B-ALL has not been extensively studied, and 

the outcomes of ph-neg B-ALL treatment vary significantly due to the lack of targeted 

therapies like dasatinib in Philadelphia positive B-ALL [34]. Herein, we employed the 

NGS technology to explore the heterogeneity of ph-neg B-ALL at the genetic and 

transcriptomeal levels using 68 ARGs [35]. Our results demonstrated that the 

expression of ARGs in B-ALL was significantly different from that in normal 

individuals, and the combination of ARG expression could classify ph-neg B-ALL into 

different risk groups using K-means clustering. These findings provided clinical 

evidence that the progression of leukaemia is closely related to the resistance of 

anoikis [36]. 

Our attention was drawn to investigating the leukaemia immune 

microenvironment in light of the potential of immunotherapy [37]. However, the role 

of the anoikis mechanism in the leukaemia immune microenvironment remains 

unclear and warrants further research. Our findings indicate that there are differences 

in immune microenvironment aberration and anoikis between the “PS-1” and “PS-2” 
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groups. Specifically, the “PS-1” group showed higher infiltration of naive B cells, 

lower CD4+ memory-activated T cells [38], and an outstanding polarisation of 

macrophages to an M2 phenotype. This phenomenon might contribute to anoikis and 

ultimately stimulate leukaemia cell growth. Furthermore, our research suggests that 

PD-1 blockade therapy might provide greater benefits in the “PS-1” group compared 

with the “PS-2” group, which is an important finding given the limited knowledge of 

the role of ICIs in B-ALL [39]. These results raise the possibility of implementing 

anoikis inducers in the “PS-1” group, which is characterised by low immune cell 

infiltration. This is because a leukaemia microenvironment with low immune cell 

infiltration facilitates leukaemia cells to evade immune surveillance [40], and the 

inflammatory environment induced by anoikis inducers has a chemotaxis effect on 

immune cells and transforms “cold” leukaemia into “hot” leukaemia, making it more 

susceptible to chemotherapy. 

In line with other models examining the correlation between anoikis and various 

cancer types [41,42], we systematically investigated anoikis involvement in our 

samples and confirmed its important yet largely unexplored role in ph-neg B-ALL. 

Despite the success of imatinib in improving the prognosis of patients with 

Philadelphia positive B-ALL, a considerable number of patients with ph-neg B-ALL 

show low sensitivity to standard therapies, particularly in adult patients. Additionally, 

the lack of a prognostic evaluation system has hampered the development of 

Individualised treatment options. Using 68 ARGs in the turquoise module, we 

employed a series of bioinformatics analyses to predict the prognosis of patients with 

ph-neg B-ALL. 

Based on our findings, further validation of our results on DNA variance and 

RNA level quantifications for ARGs in a larger and prospective cohort is necessary. 

Moreover, as anoikis is a newly discovered and complex BP, it requires further 

investigation. In addition, the limited number of cases in our study, especially with the 

introduction of CAR-T therapy, underscores the importance of exploring the role of 

anoikis in patients with ph-neg B-ALL patients in the new era. Thus, our current 

knowledge and data suggest the need for updates and further validation in future 

research. One of the primary limitations of this study is its reliance solely on 

bioinformatics and computational data analysis. While these approaches are 

instrumental in uncovering potential genetic interactions and pathways implicated in 

B-ALL, they lack the empirical validation that can only be provided through direct 

laboratory experiments and clinical trials. Future research will focus on validating the 

predictive markers identified in this study through in vitro and in vivo experiments, as 

well as clinical studies to confirm their functional significance and relevance to patient 

care. Such steps are crucial for bridging the gap between theoretical predictions and 

practical, clinical applications. 

6. Conclusion 

Altogether, this study defined four different co-expression modules and divided 

ph-neg B-ALL patients samples into two different subgroups according to ARGs by 

WGCNA algorithms. The correlation of ARGs with leukemic immune 

microenvironment and genomic mutations was also investigated. The results showed 
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that the ARGs were negatively correlated with the occurrence of tumor and immune 

cell infiltration. Overall, our findings have great significance for investigating the 

molecular pathways and mechanisms associated with ARGs involved in ph-neg B-

ALL and for developing treatments and prognoses of ph-neg B-ALL. 
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