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Abstract: To solve the problems that action recognition methods in rope skipping competitions 

rely on manual annotation and are prone to misjudgment in complex movements, this study 

implemented an AI-based rope skipping action recognition and tactical optimization method, 

using artificial intelligence technology to achieve efficient and accurate action recognition and 

tactical adjustment. The feature extraction of video frames is performed through Convolutional 

Neural Network (CNN), and the processed feature sequence is sent to Long Short-Term 

Memory (LSTM) network for processing, so as to achieve accurate recognition of rope skipping 

actions. To optimize the competition strategy, the Deep Q Network (DQN) is used to optimize 

the tactical execution. Experimental results show that the proposed model can recognize 

common rope skipping movements such as single jump, double-leg jump and cross jump with 

an average accuracy of 98.4%; the tactical strategy optimized by reinforcement learning 

significantly improves the performance of athletes, the jumping frequency increases by 4.59% 

and the error rate decreases by 0.986%. This study not only provides an intelligent evaluation 

and optimization solution for rope skipping competitions, but also has certain reference 

significance for action recognition and tactical decision-making in other sports. 

Keywords: rope skipping tactical optimization; action recognition; Convolutional Neural 

Network; Long Short-Term Memory Network; Deep Q Network 

1. Introduction 

In rope skipping competitions, with the continuous improvement of competitive 

level, the demand for competitions is moving towards diversification and 

specialization. Survey data in 2021 show that rope skipping training accounts for 12.6% 

of sports competitions. However, the accuracy of competition effect evaluation is only 

45.3%, highlighting the obvious defects of the current evaluation system. Many 

training programs lack scientific basis and fail to fully combine the physical condition, 

training intensity and recovery cycle of athletes, resulting in limited training results. 

At the same time, the fairness of referees, as the core guarantee of fairness in 

competitions, faces the difficulty of judging due to the complexity and diversity of 

rope skipping movements, especially in the standardization and consistency of 

movement execution and timing. Although the existing referee scoring system has a 

certain degree of standardization, in actual operation, it is still limited by subjective 

judgment and technical tools, and misjudgment or inconsistent scoring may occur. In 

addition, tactical optimization is becoming more and more critical in rope skipping 

competitions. Although high-level athletes can flexibly adjust their tactics, most 

players still lack sufficient theoretical support and practical experience. The 

improvement of the training system, the increase in technical difficulty and the 

improvement of equipment are all key factors in promoting the professional 
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development of rope skipping competitions. In order to address challenges such as 

referee fairness and tactical optimization, motion recognition technology has been 

introduced to help solve them. Traditional action recognition methods usually rely on 

manual annotation and rule-driven image processing technology [1,2]. Although these 

methods can identify and judge rope skipping movements to a certain extent, rope 

skipping is a high-speed, high-frequency sport, and traditional methods are difficult to 

accurately identify complex movements. In addition, manual labeling can easily lead 

to data bias, affecting the generalization ability of the system. With the evolution and 

application of artificial intelligence (AI), new solutions are constantly provided for 

this challenge. 

As an important technology in the field of AI, CNN (Convolutional Neural 

Network) has shown excellent performance in image recognition and feature 

extraction. CNN can automatically extract different levels of feature information from 

the input image through multi-level convolution and pooling operations, avoiding the 

tedious process of manually designing features. Banerjee et al. [3] recognized actions 

based on key skeleton joints by extracting complementary features of angle 

information and human kinematics and using four CNNs for classification. Different 

from the traditional classifier combination, Choquet integral is used for fuzzy fusion, 

and the final decision result is adaptively generated according to the decision 

uncertainty of each CNN. This method performs well on multiple challenging datasets, 

proving the effectiveness of fuzzy fusion CNN in action recognition. Khan et al. [4] 

proposed a 26-layer CNN architecture for complex action recognition, combining high 

entropy fusion and Poisson distribution feature selection methods to optimize feature 

accuracy. Through extreme learning machine (ELM) and Softmax classification, 

experiments show that this method achieves excellent performance on multiple data sets 

and has higher accuracy and faster test time than existing methods. Leong et al. [5] 

proposed a network architecture that combines 2D and 3D convolutions. They extracted 

spatial features by pre-training 2D CNN, used 1D convolution for temporal encoding, 

and then combined it with a 3D convolution layer. This method reduced the number 

of parameters and effectively alleviated overfitting. On the UCF-101 dataset, it 

improved the accuracy by 16% to 30% compared with 3D CNN models of the same 

depth. Cui [6] et al. proposed a basketball technical action recognition method based 

on a single multi-frame detection algorithm and 3DCNN. After fusing the features of 

the original frame and the cropped frame, the recognition accuracy reaches 94.6%, 

which is significantly better than single resolution recognition. Although CNN 

performs well in static image recognition, it is often difficult for a simple CNN model 

to fully capture the temporal changes between actions when faced with high-frequency, 

periodic changes such as rope skipping. To solve this problem, some scholars use 

LSTM to process temporal information, which can effectively handle the above 

problem. 

For rope skipping action recognition, LSTM can effectively capture the temporal 

characteristics of the action. Therefore, He et al. [7] combined the advantages of CNN 

in spatial feature extraction with the ability of LSTM in processing temporal 

information and proposed a densely connected bidirectional LSTM model, namely 

DB-LSTM (Densely-Connected Bi-directional LSTM). This model shows good 

performance in action recognition for long videos. Muhammad et al. [8] proposed an 
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attention mechanism that combines bidirectional LSTM and dilated CNN (DCNN) for 

human action recognition in videos. DCNN extracts key features, and Bi-directional 

LSTM learns long-term dependencies to further improve performance. Experiments 

show that this method improves the recognition rate by 1%–3% compared with the 

existing technology on datasets such as UCF11 and J-HMDB. Zhu et al. [9] proposed 

a space-time model based on bidirectional LSTM-CNN (BiLSTM-CNN) for action 

recognition from skeleton data. By extracting rich space-time information through a 

hierarchical space-time dependency model and integrating LSTM and CNN, the model 

performed well on some public datasets. 

As a reinforcement learning method, DQN (Deep Q Network) can learn the optimal 

strategy by interacting with the environment. Chao et al. [10] studied the method of 

combining reinforcement learning with IoT devices to optimize basketball training 

strategies. Using DQN and health sensors, they monitored the health status, position, 

and trajectory of the ball of athletes in a simulated environment in real time and 

formulated offensive and defensive strategies. The results showed that the model 

predicted movements with an accuracy of 95%, reduced the risk of injury by 60%, and 

achieved a 98% overall performance and efficiency for the players. DQN can also help 

athletes dynamically adjust the frequency and form of rope skipping according to the 

game status, thereby improving performance and stability. 

This article selects a combination of ResNet-50 and LSTM for rope skipping 

action recognition, which has better balance and efficiency than Transformer or GRU 

(Gated Recurrent Unit). Although Transformer has advantages in time series modeling, 

its high computational complexity and resource requirements limit its application in 

real-time tasks. LSTM is suitable for processing the time series dependency of rope 

skipping action due to its fewer parameters and efficient calculation. Therefore, the 

combination of ResNet-50 and LSTM provides an efficient and accurate solution for 

rope skipping action recognition. 

This study implemented an AI-based rope skipping action recognition and 

tactical optimization method. By integrating the ResNet-50 (Residual Network) model 

and LSTM model in CNN and the DQN algorithm, it solved the problems of 

insufficient temporal information processing [11,12] and lack of tactical optimization 

in traditional action recognition methods. ResNet can extract image features and 

combine with LSTM to process time series data to accurately identify the type and 

details of rope skipping movements; DQN can optimize competition strategies and 

adjust athletes’ tactical execution in real time during competitions to improve stability 

and performance. Model evaluation uses indicators such as accuracy and recall to 

evaluate model performance and generalization ability. Finally, the tactical 

optimization model is used to compare the results before tactical optimization to prove 

the superiority of the model in tactical optimization in rope skipping competition. 

2. Methods 

2.1. Integration and feature analysis of body sensor data 

In the rope skipping action recognition task, video data provides important 

information about the athlete’s visual information, but a single video data is often 
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difficult to fully capture the details of the action. Therefore, this study introduces body 

sensor data to enhance the recognition accuracy of rope skipping actions by integrating 

multimodal data. 

In this study, accelerometers and gyroscopes are used to capture the key action 

features of athletes during rope skipping. The accelerometer is used to detect the 

acceleration changes of athletes during the jump, and the gyroscope is used to capture 

the rotation and swing of the body. The sensors are installed on the athlete’s ankles 

and arms to effectively collect the time series data of the rope skipping action. By 

preprocessing and feature extraction of the collected sensor data, we extracted features 

including acceleration and angular velocity to input into the subsequent machine 

learning model for action recognition and analysis. 

In terms of feature integration, this paper fuses sensor data with video data and 

uses deep learning methods for joint training to achieve more efficient and accurate 

rope skipping action recognition. Through this kind of multimodal data integration and 

feature analysis, the performance of the recognition system in various complex 

scenarios can be effectively improved. 

2.2. Action recognition of fusion model 

2.2.1. Data preprocessing 

Since the action changes between video frames are minimal, it can capture the 

key action frames in the video to reduce the model training time and improve the 

model detection effect [13,14]. This study introduces the OpenCV library in Python, 

which is a widely used open source computer vision library with the ability to 

efficiently extract and process video frames. To reduce consumption and ensure that 

the video frame can record details such as jumping frequency and continuity in detail, 

the skipping video is extracted at a fixed frequency, set to extract 10 frames per second. 

The following are the specific steps for video extraction: 

(1) Read the video file; 

(2) Read and save the image frame by frame; 

(3) Set the reading frame rate to 10 frames per second. 

2.2.2. ResNet-50 feature extraction 

(1) Convolutional layer 

In each layer of the residual network, the input feature map x is first convolved, 

using the convolution kernel W and bias b to extract local features [15]. The formula 

for the convolution operation is: 

y = W × x + b (1) 

This means that the convolution kernel is point-by-point multiplied with the local 

area of the input feature map x and a bias term is added. Subsequently, the output is 

batch normalized (BN) to eliminate internal covariance shift and speed up the training 

process [16]. 

(2) ReLU activation function 

Next, the batch normalized output is processed by the ReLU activation function. 

The ReLU formula is: 
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ReLU(x) = max(0, x) (2) 

This means that for each input value, if it is negative, it becomes zero, and if it is 

positive, it remains unchanged. 

(3) Second convolutional layer 

The output after ReLU activation continues to enter the next convolutional layer. 

In the second convolutional layer, the input feature map is convolved again, and the 

convolution kernel and bias terms are similar to the previous ones to obtain a new 

feature representation. Batch normalization is applied again to ensure the consistency 

and stability of feature data [17]. 

(4) Skip Connection 

Different from ordinary neural networks, residual networks introduce residual 

connections. In this step, the original input feature x is added to the output feature z of 

the second convolutional layer to form a residual connection: 

output = z + x (3) 

This operation can help information flow through the network and avoid the 

problem of gradient vanishing. 

(5) Final output 

Through the skip connection, the output is z + x, which makes the output of each 

layer not only depend on the processing result of the convolutional layer, but also 

retains the information of the original input, ensuring that deeper networks can still be 

effectively trained [18,19]. 

final output = ReLU(z + x) (4) 

2.2.3. Sequential modeling 

In the rope skipping action recognition task, LSTM is used to perform sequential 

modeling on the features extracted from ResNet-50. The extracted feature sequence 

{𝑥1,𝑥2, ..., 𝑥𝑡} is input into LSTM, which is used to capture the temporal information 

of the action [20]. The core of LSTM lies in its internal memory cell (cell state) and 

hidden state (hidden state), which can retain and update important temporal 

information [21,22]. 

(1) Input feature construction 

The first step to extract action features from video data is to process each frame 

of the image through ResNet-50. ResNet-50 performs convolution operations on the 

input rope skipping video frames and extracts their spatial features. These features are 

organized into a time series X = {x1, x2, . . . , xT}, T is the number of video frames. The 

extracted features are then normalized to ensure that they are on the same scale, which 

helps stabilize the training process [23]. The video data is divided into time windows, 

and each window constitutes an independent time series as the input of the LSTM 

model. 

(2) Application of forget gate 

The function of the forget gate is to determine which information in the historical 

memory needs to be retained [24,25]. In rope skipping action recognition, the forget 

gate can help the network ignore irrelevant information, such as action gaps or invalid 

noise. 
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(3) Application of input gate and candidate memory unit 

The input gate controls the degree of information addition at the current time step, 

and the candidate memory unit generates possible new memories. 

In rope skipping action recognition, the input gate ensures that important action 

patterns (such as the specific arm movement of cross jump) are added to the memory 

in a timely manner. 

(4) Memory unit update 

The memory unit is updated by combining the forget gate and the input gate to 

generate the long-term memory state of the current time step [26]. For the recognition 

of rope skipping, this step is very critical for modeling the periodic jumping action 

sequence to ensure the integrity of the timing characteristics. 

(5) Output gate and hidden state generation 

The output gate generates the current hidden state ℎ𝑡 , which is the activation 

result of the memory unit 𝐶𝑡. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡) (6) 

The hidden state ℎ𝑡 is the core output of the model and is directly used as the 

input for the next classification. 

(6) Action Recognition 

The hidden state of the last time step hT of LSTM is sent to a fully connected 

layer, and the final output is classified using the Softmax function to output the 

probability of each rope skipping action. If there is a k type action, the output of the 

Softmax function is P(y = k|hT), which represents the probability of belonging to 

each type of action: 

P(y = k|hT) =
exp(WkhT + bk)

∑ exp(WkhT + bk)K
k=1

 (7) 

Among them, Wk  and bk  are the weights and biases of the corresponding 

categories. 

(7) Training and optimization 

The model is trained using the cross entropy loss function, which calculates the 

error between the predicted action and the actual label: 

L = − ∑ yk · log(P(y = k|hT))

K

k=1

 (8) 

Among them, yk is the One-Hot encoding of the actual label, and P(y = k|hT) is 

the predicted probability. 

2.3. Tactical optimization of DQN 

Through DQN, it can optimize the tactics of the rope skipping competition and 

let the agent (rope jumper) choose the best action in different competition 

environments [27] to optimize its performance. First, it needs to build a virtual 

environment for the rope skipping competition and define the state variables in it. The 
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state vector st includes the current action state, jumping frequency, position and other 

information of the rope jumper, which is represented as st = [xt, yt, vt, pt]. Among 

them, xt  and yt  represent the spatial position of the rope jumper, vt  represents the 

jumping speed, and pt represents the rope jumping frequency (such as fast frequency, 

slow frequency, etc.). This information can be passed to the DQN model as input. 

In addition, the action needs to be defined. An action set A can be defined, which 

represents the optional strategies of the rope jumper. The action set includes different 

types of actions such as single hopping, double-leg hopping, and cross-jumping, so 

that contestants can quickly adjust and switch actions according to the requirements 

of the competition. The agent affects the state of the environment by selecting action 

at [28]. To evaluate the quality of the action, a reward function R(st, at) is designed. 

If a continuous jump is successfully completed, then R(st, at) = +1; if the jump fails 

or is interrupted, then R(st, at) = −1; if the jump frequency is adjusted properly, 

additional rewards can be given. The formula is expressed as: 

R(st, at) = {
+1,                     Action success
−1,                         Action failed
+2,               Good adjustment

 (9) 

The core of DQN is to estimate the state-action value function Q(st, at), whose 

goal is to maximize the future cumulative reward [29]. The recursive definition of the 

Q function is: 

Q(st, at) = E[R(st, at) + γmaxQ(st+1, a′)] (10) 

The state vector st is used as input, and the Q value corresponding to each action 

is used as output. The network structure can adopt a standard multi-layer fully 

connected network. Applying DQN to rope skipping tactic optimization can be done 

in the following steps: 

(1) Initialization 

At the beginning of training, the parameters of the Q network and the target Q 

network are initialized to random values. The Q network is used to generate the Q 

value of the action in each state, while the target Q network is used to stabilize the 

training process. Its parameter update frequency is low and is only updated to the 

parameters of the Q network after a certain number of steps [30,31]. The experience 

replay buffer is used to store information such as the state, reward, and next state 

corresponding to each action. During training, a mini-batch is randomly extracted from 

the replay buffer for update [32]. The hyperparameter settings include the learning rate, 

discount factor (gamma), and epsilon value of the Q network. The epsilon value 

gradually decays, relying more on the exploration strategy in the early stage and 

gradually relying on the learned strategy in the later stage. 

(2) Training cycle (Episodes) 

Each round of training is conducted through multiple episodes, each episode 

starts from the beginning and ends of the agent. At the beginning of each training 

episode, the state s0 of the rope skipping environment is reset and the rope skipping 

state of the athlete is initialized. 

(3) Action selection 
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During the training process, the ε-greedy strategy is used to select actions. A 

random action is selected with a probability of ε, and the optimal action predicted by 

the current Q network is selected with a probability of 1-ε. In the rope skipping task, 

the actions include single-leg jump, double-leg jump, and cross-jumping. The Q 

network predicts the Q value of each action based on the current state (such as the 

continuity of the rope skipping, the jumping frequency, and other factors), and selects 

the action with the highest Q value as the action performed by the agent. In this way, 

the agent is able to strike a balance between exploring new actions and exploiting the 

current optimal strategy. 

(4) Executing actions 

During the execution process, the agent operates in the environment according to 

the selected action at and obtains a new state st+1 and a corresponding reward rt. The 

current state st , action at , reward rt  and new state st+1  are then stored in the 

experience replay pool so that samples can be randomly drawn from it for updating in 

subsequent training. 

(5) Randomly draw mini-batch from the replay pool 

A mini-batch (a small batch of samples) can be randomly drawn from the 

experience replay pool. Each sample includes (state, action, reward, next state). This 

step is to break the correlation of data and improve the training effect. 

(6) Calculate the target Q value 

Calculate the target Q value: For each sample, use the target Q network to 

calculate the target Q value. The calculation formula of the target Q value is: 

y
t

= rt + γ · maxQ’(st+1, a′; θ
−)] (11) 

rt  is the immediate reward, γ  is the discount factor that determines the 

importance of future rewards, and maxQ’(st+1, a′; θ−) is the maximum Q value of all 

possible actions of the target Q network in the next state st+1. 

(7) Update the Q network 

Calculate the predicted value of the current Q network: For each sample, calculate 

the Q value corresponding to the current state st and action at through the current Q 

network, that is, Q(st, at; θ). 

Loss function: Calculate the loss function of the Q network, using the mean 

square error: 

L(θ) = E(st, at, rt, st+1)~D[(yt − Q(st, at; θ))2] (12) 

Among them, yt is the target Q value, Q(st, at; θ) is the Q value prediction of the 

current Q network for the current state and action, and D is the experience replay pool. 

(8) Update the target Q network 

At regular intervals, the parameters θ of the current Q network are copied to the 

parameters θ− of the target Q network to ensure that the target Q network remains 

stable. 

(9) Repeat the training process 

Steps 2 to 8 can be repeated until the model converges to meet the set training 

termination conditions. The training process is shown in Figure 1. The X-axis is the 

number of iterations, and the Y-axis is the loss value. 100 iterations are shown. It can 



Molecular & Cellular Biomechanics 2024, 21(4), 936.  

9 

be seen that the model begins to converge at 40 rounds and eventually converges to 

around 0.1. 

 

Figure 1. Model iterative training process. 

DQN reduces the instability of training through experience replay and target 

network. As training progresses, the Q network gradually learns the best actions under 

different states. Finally, the agent can choose the appropriate action according to the 

competition environment, such as adjusting the frequency in fast frequency jumps and 

quickly recovering the frequency when errors occur. 

The rope skipping action recognition method that combines ResNet-50 and 

LSTM can effectively extract the spatial features and temporal information of the rope 

skipping action [33] and accurately identify the athlete’s action pattern. At the same 

time, combined with DQN for tactical optimization, it can dynamically adjust the 

athlete’s offensive and defensive strategies in real-time competitions. Figure 2 is a 

flow chart of the combination of the above methods, which shows in detail the organic 

integration of the two modules of action recognition and tactical optimization. 

 

Figure 2. Flowchart of action recognition and tactical optimization. 
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3. Experimental configuration and data 

The hardware and software configuration details of this experiment are as follows: 

the system uses Windows 10, equipped with 32GB memory, the CPU model is Intel 

Xeon Gold 6348, the main frequency is 2.6GHz, and it is equipped with an RX 5700 

XT graphics card. The programming language used in the experiment is Python 3.10, 

and the development environment is PyCharm 2023 version. 

The partial dataset of the rope skipping video is shown in Figure 3, showing a 

complete rope skipping action cycle. The dataset collected 8 subjects, each of whom 

demonstrated five rope skipping methods in the video: single-leg jump, double-leg 

jump, cross jump, alternate jump with feet, and jack jump. Each action was filmed 10 

times, totaling 400 video samples. In addition, the dataset also includes various state 

changes during rope skipping, different jumping frequencies (such as fast frequency 

and slow frequency), and changes in the continuity of the action (such as action 

interruption and continuous successful jump). Different skipping objects and the above 

changes provide the model with diverse training data, helping it to identify and 

optimize skipping performance in different situations. 

 

Figure 3. Rope skipping video frame capture. 

4. Model evaluation 

This study adopted a 5-fold cross-validation method to evaluate rope skipping 

action recognition and randomly divided the data into 5 groups, each containing 80 

video samples. Each time, 4 groups were selected as training sets (320 samples), and 

the remaining group was selected as validation set (80 samples). This process was 

repeated 5 times, and the 5 verification results were finally summarized. The 

evaluation indicators included accuracy, recall and precision [34,35]. The calculation 

formulas for accuracy (A), recall (R), and precision (P) are as follows: 

A =
TP + TN

N
 (13) 

R =
TP

TP + FN
 (14) 

P =
TP

TP + FP
 (15) 

This paper counts the values of various indicators in 5 rounds of verification. 

Each round counts the average of 5 actions, and finally counts the total average of 5 

rounds. Table 1 shows the evaluation indicator results of 5 rounds. The accuracy rate 

reached 98.4%, the precision rate reached 96.1%, and the recall rate reached 96.3%, 

which verified the effectiveness of the model in rope skipping action recognition. 
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Table 1. Evaluation index results of each round of this method. 

Fold Accuracy Precision Recall 

1 0.985 0.964 0.963 

2 0.985 0.963 0.963 

3 0.985 0.962 0.963 

4 0.982 0.953 0.963 

5 0.985 0.963 0.963 

Average 0.984 0.961 0.963 

In order to comprehensively evaluate the effect of the rope skipping action 

recognition method based on the combination of ResNet-50 and LSTM proposed in 

this paper, this paper introduces LSTM, Transformer and GRU models for 

comparative experiments. These models are classic methods in time series data 

processing. Among them, LSTM is widely used in action recognition tasks with its 

excellent time series modeling ability, Transformer has advantages in capturing long-

term dependencies and parallel computing, and GRU has outstanding performance in 

some practical applications with its low computational complexity and high training 

efficiency. Specifically, the recall rate and accuracy of these four models in five-fold 

cross validation are compared. Table 2 shows the performance of different models in 

different folds. 

Table 2. Model performance comparison: recall and precision. 

 Metrics 1 2 3 4 5 

GRU 
Recall 0.834 0.834 0.835 0.833 0.832 

Accuracy 0.855 0.855 0.854 0.855 0.854 

LSTM 
Recall 0.867 0.866 0.867 0.867 0.866 

Accuracy 0.883 0.884 0.882 0.882 0.883 

Transformer 
Recall 0.887 0.887 0.888 0.887 0.886 

Accuracy 0.904 0.906 0.906 0.907 0.907 

Methods of this 

article 

Recall 0.963 0.963 0.963 0.963 0.963 

Accuracy 0.985 0.985 0.985 0.982 0.985 

In addition, the confusion matrices of the five validation rounds were combined, 

and the confusion matrices of each round were added together to obtain the image 

shown in Figure 4. The diagonal line indicates the number of samples that are 

correctly judged. It can be seen that the model can recognize all five types of rope 

skipping movements very well, but is slightly worse at cross jumps and double-foot 

jumps, and their error rates are relatively high. 

The reason may be that the two actions are similar in movement patterns, which 

leads to confusion in the feature extraction and classification process. Both cross jump 

and double-foot jump involve synchronous jumping of both legs, and the frequency is 

high. Especially when jumping with two feet, both legs jump almost at the same time, 

which is similar to the alternating action of cross jump in rhythm and frequency. To 

analyze the specific reasons, the Grad-CAM visualization tool can be used to locate 



Molecular & Cellular Biomechanics 2024, 21(4), 936.  

12 

the model’s focus area in the process of these action recognition. It may be found that 

the model fails to fully capture the details of the action at certain key moments. 

Through Grad-CAM analysis, it is found that when the model recognizes cross jump 

and double-foot jump, it pays too much attention to the action of synchronous jumping 

of both legs, and ignores other details, such as the difference in arm movements. 

Because the jumping methods of double-foot jump and cross jump are very similar, 

especially when the legs jump almost at the same time, it is difficult for the model to 

distinguish the slight differences between the two, which leads to confusion of actions. 

 

Figure 4. Confusion matrix after integration. 

In this study, DQN was used to optimize the tactical strategy of rope skipping, 

and the tactical optimization effect was evaluated by jumping frequency and error rate. 

Jumping frequency refers to the number of jumps per unit time, while error rate refers 

to the proportion of the number of failures caused by various reasons (such as the foot 

not jumping over the rope, the rope stuck, etc.) to the total number of jumps during the 

rope skipping process. This paper uses one minute as the evaluation standard, the same 

subjects were tested under the same conditions and divided into two groups: A (control 

group) and B (experimental group). Group A is the control group, and Group B uses 

tactical optimization technology. To ensure the rigor of the experiment, the 

experimenter conducted a total of 10 experiments (with rest time in between to ensure 

the physical distribution of the subjects), and statistically calculated the average values 

of the evaluation indicators under different actions. Table 2 shows the results before 

and after tactical optimization. 

In Table 3, after tactical optimization, the jump frequency and error rate have 

been significantly improved. The average jump frequency before optimization was 

3.053 times/s, and the average jump frequency after optimization increased to 3.193 

times/s, an increase of 4.59%. In terms of error rate, the average error rate before 

optimization was 5.791%, while the average error rate after optimization dropped to 

4.805%, a decrease of 0.986%. These results prove the application effect of deep Q 

network (DQN) optimization strategy in rope skipping, which can effectively improve 

athletes’ performance, reduce errors and improve sports efficiency. 
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Table 3. Comparison of rope skipping before and after optimization. 

Group Total number of jumps Number of errors Jump frequency (times/s) Error rate (%) 

A 

184 10 3.067 5.435 

183 11 3.050 6.011 

186 9 3.100 4.839 

182 12 3.033 6.593 

181 11 3.017 6.077 

B 

193 8 3.217 4.145 

192 9 3.200 4.688 

194 9 3.233 4.639 

189 10 3.150 5.291 

190 10 3.167 5.263 

5. Conclusions 

This paper has successfully achieved high-precision intelligent action recognition 

and tactical optimization by deeply studying the application of AI technology in rope 

skipping action recognition and tactical optimization. ResNet-50 is used combined 

with LSTM to process the image features and timing information of rope skipping 

actions, which significantly improves the accuracy of action recognition in rope 

skipping competitions. By optimizing the tactical strategy through DQN, the 

performance of athletes was effectively improved. The research results provide an 

intelligent evaluation and optimization solution for rope skipping competitions, and 

provide an important reference for action recognition and tactical decision-making in 

other sports. Future research will focus on exploring the real-time processing 

application of the Transformer model in rope skipping motion recognition and tactical 

optimization. With its powerful parallel processing capabilities, Transformer can 

effectively improve the accuracy and real-time performance of time series data 

processing. In addition, the artificial intelligence algorithm will be combined with a 

high-performance computing platform or embedded system to promote its application 

in actual competitions and support real-time data processing. In the future, the user 

experience will also be optimized, and through the human-computer interaction 

interface and real-time feedback mechanism, coaches and athletes will be helped to 

adjust tactics in a timely manner, improve decision-making efficiency and competition 

performance. The seamless connection and efficient operation of these technologies 

will promote the intelligent and professional development of rope skipping 

competitions. 
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