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Abstract: Biosensors allow the monitoring of student movement in real-time and enhance 

the effectiveness of personal workouts through data analysis to enhance performance. Even 

though there is significant potential, biosensor precision, concern about data privacy, cost, 

and the need for expert knowledge limit the implementation of such technologies in physical 

therapy. This research aims to analyze educational systems that make use of biosensors to 

monitor the movement of students and customize their course of ideas. In addition, it also 

provides more efficient tools for exercise interventions based on factual information. A 

Resilient Sailfish Algorithm-tuned Enriched Long Short-Term Memory (RSA-ELSTM) 

method is proposed to increase prediction accuracy, address data challenges, and improve 

motion analysis beyond current limitations. Datasets used include motion capture and sensor 

readings, which capture different student movement patterns. Preprocessing involves image 

resizing, and normalization, while VGG16-based feature extraction is used to improve model 

performance and accuracy. The RSA-ELSTM approach uses biosensor data and deep learning 

(DL) to optimize motion analysis, increasing accuracy, flexibility, and real-time analysis. The 

RSA-ELSTM the model obtained a 99.1% F1-score, 99.3% accuracy, 98.7% recall, and 

99.2% precision. Results revealed improved accuracy in motion prediction and real-time 

analysis, improving personalized workouts. In conclusion, the RSA-ELSTM approach 

significantly enhances biosensor-based exercises, provides accurate student movement 

analysis, and improves individual performance management, thus making educational 

outcomes good. 

Keywords: physical education; teaching plan; evaluate students’ movement status; resilient 

sailfish algorithm-tuned enriched long short-term memory (RSA-ELSTM) 

1. Introduction 

Importantly, physical education (PE) is a part of the students’ total development, 

as it enhances health and physical fitness and helps persons maintain well-being. 

Current teaching methods are often characterized by a lack of personalized pointer 

and real-time monitoring of the individual child’s progress. The modern direction of 

educational practice makes more interest in using technology in PE classes. The 

integration of Artificial Intelligence (AI), Machine Learning (ML), and biosensors 

represents a prevailing area for making PE more personalized, data-driven, and 

responsive to the nuances of each student [1]. Real-time tracking of the physical 

activities of students during PE classes is currently possible because of using 

effective biosensors. In contrast with conventional observations, biosensors present 

highly reliable and objective means of assessing physical activities. This might even 

renovate the entire aspect of PE instruction by monitoring each student’s growth and 
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giving individual feedback based on the progress of learning [2]. Figure 1 depicts 

the various human movements to be considered for motion recognition. 

 

Figure 1. Various human motions for recognition. 

Despite the potential benefits, it is difficult that sensor performances may vary 

in some environments and the human movement complexity cannot be predicted and 

handled perfectly. The complexity of the dataset demands that AI and ML be used to 

analyze sensor data, make it more accurate, and extract meaningful insights from 

such a complex dataset. These technologies remove various restrictions on 

biosensors’ performance and ensure that the data being gathered is meaningful and 

practical [3]. With these technologies, biosensors combine and link their data to 

advance their analytical and predictive results toward assessing the physical 

performance of a student. The training from the past datasets assists ML algorithms 

in diagnosing patterns in movements, indicating anomalies, and forecasting students’ 

performance. Such capabilities open new prospects for personalized learning. Using 

AI to analyze movement patterns allows educators to get a deeper understanding of 

every child’s strength and weakness so that the exercise routine for every student can 

be individually designed to improve student outcomes [4]. 

Furthermore, AI can facilitate the automated service of student feedback, 

making it fast and targeted. For PE, real-time feedback plays a significant role in 

creating immediate corrective measures and enhancing learner engagement. For 

instance, through AI-enabled systems, students may receive instant feedback on their 

movement, posture, and technique. Personalized, on-the-spot recommendations 

enable them to correct things during the exercise, resulting in a faster improvement 

process and improved learning [5]. The application of biosensors and AI is not 

limited to using this as an individual performance assessment but also extends to 

assessing collective group dynamics. Multiple analyses within simultaneous sets of 

students can give information to the AI system. It indicates different trends, common 

problems, and a certain number of opportunities, which allows them in advance to 

adjust lesson plans with PE activities. With the help of AI, educators can develop 
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better group-based activities so that curriculum learning becomes more engaging and 

inclusive to all students [6]. 

Even though AI and biosensors will greatly develop PE, data security, and 

privacy are the significant problems to be concerned. With greater reliance on digital 

technologies for collecting personal data about students’ physical activity, 

responsible data handling is an ethical issue. Moreover, student data should have a 

clear policy and guidelines on how to use it to establish trust between educators, 

students, and their families [7]. Improved biosensors, coupled with support 

infrastructures to analyze and give feedback, can cost quite a bit. For such systems to 

become widely adopted, efforts needed toward lowering costs, improving 

accessibility, and providing affordable solutions to schools should be made. There 

might be a collaborative partnership between technology developers and institutions 

of education to make these technologies affordable and scalable [8]. 

Apart from the cost issue, school systems may not have either the financial 

resources or the technical expertise to effectively implement biosensor-based 

solutions. Such a problem can be corrected by investing in teacher training and 

professional development so that these educators can use these technologies in their 

classrooms. By having the appropriate support and training, teachers can incorporate 

biosensors and AI tools into their classroom teaching, enhance their ability to 

monitor student performance and deliver more specific feedback [9]. The integration 

of AI, ML, and biosensors in PE could make a huge difference in teaching and 

learning outcomes. The feedback from these technologies would come in real-time, 

personalized performance tracking. The use of this sort of technological equipment 

means shifting over to a completely different, transformative way of bringing a more 

inclusive, responsive, and effective PE experience [10]. The investigation of human 

body biomechanics and how it relates to athletic performance is known as sports 

mechanics. Understanding the morphological elements that affect efficiency and risk 

of injuries, entails the examination of progress, violence, and radiation during 

sporting events. To assist athletes, maximize their effectiveness and lower their risk 

of damage, the multidisciplinary area of sports biometrics integrates aspects of 

science, technology, medical terminology, and metabolism. It is crucial to 

comprehend sports biomechanics since it can assist the athlete in designing new 

training regimens and equipment to enhance their performance as well as improve 

their execution and training approaches [11]. 

Using handheld devices like tablets and cell phones has become one of the most 

common applications of information and communication technologies (ICT), and 

their increasing prevalence in educational settings has demonstrated their potential to 

be a powerful teaching tool. Students attending colleges frequently use handheld 

gadgets like tablets and cellphones. notably using social media platforms on them to 

communicate with one another, remain informed on current events, and find pleasure 

[12]. 

1.1. Research objective 

The objective of this research is to design a teaching plan in PE in which 

biosensors track the students’ movement in real-time. Thus, the proposed Resilient 
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Sailfish Algorithm-tuned Enriched Long Short-Term Memory (RSA-ELSTM) 

system provides feedback to each student for enhanced performance. The RSA-

ELSTM method is employed to enhance prediction accuracy and address data 

challenges. This enables effective and data-driven interventions in PE by optimizing 

movement analysis. 

1.2. Paper organization 

The flow of the research paper is arranged initially with Section 2 discussing 

the detailed related work and research gap. Section 3 provides a detailed 

methodology section, which contains information about the RSA-ELSTM model 

data collection process and preprocessing techniques. Section 4 provides 

experimental outcomes and evaluation of results. Section 5 discusses effectiveness 

and improvements. Finally, Section 6 presents the conclusion by summarizing the 

key findings. 

2. Related works 

A framework was developed [13] incorporating the metaverse and a K-means 

clustering algorithm with virtual reality (VR) football teaching videos under AI. It 

was demonstrated to enhance the value of football teaching for mobile internet. The 

strategy optimized the content delivery by using K-means for video distribution. The 

simulation experiments using a Content Delivery Network (CDN) simulator 

demonstrated its superiority over baseline methods. The students analyzed the 

football actions using the immersion and involvement of the VR experience. 

Therefore, the results improved the teaching and integration of smart learning into 

football education. The deployment of AI in PE was explored [14] and it provided 

how AI is going to influence education and sport by making PE better through 

assessments of learners, and individualized teaching. Besides facilitating 

personalization in PE, the application of AI enriched its visualization as well as 

reproduction. An important finding of the research was that AI application mastery is 

essential for trainee PE professionals. The findings contributed to the development of 

research on AI use in education and sport and showed the better improvement of AI 

in PE. 

A self-powered biosensor was introduced [15], which was used to monitor 

activity during exercise for training and assisting purposes. It comprised a low-cost 

poly (vinylidene fluoride) (PVDF)/Tetrapod-shaped ZnO (T-ZnO) film, which 

allowed the sensor to be attached to the skin and operated entirely without the need 

for a battery. Through piezoelectric surface coupling, it monitored real-time physical 

data together with physiological changes. Testing was done with a professional speed 

skater. Better results have been obtained in the evaluation and piezoelectric motion 

monitoring. By combining convolutional neural networks (CNN) with bidirectional 

long short-term memory (BiLSTM), a strong classification model for activity 

recognition was developed [16]. The model required minimal preprocessing to 

automatically extract feature information from raw sensor data. The model 

automatically identified both sequential information through long-term dependency 

as well as local features. The capability of the model to capture different temporal 
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dependencies through varying filter sizes enhanced the feature extraction procedure. 

The model’s accuracy was refined when its performance was assessed. 

A structure for action recognition was employed [17], with the incorporation of 

waterway and spatial attention modules in a typical deep learning (DL) setup. The 

four primary components were visual skin tone extracted by a pre-trained CNN, 

relayed through an attention module. Then followed by a BiLSTM network that 

could capture the sequential dependencies. The output was forwarded to a fully 

associated layer, where the SoftMax classifier assigned action probabilities. Marginal 

loss function and cross-entropy loss were added to increase class difference. The 

model was trained and validated using a tennis dataset and the results demonstrated 

improved results. LSTM networks were used to design a model that detected the 

intervals of muscle activation from the electromyography (EMG) signals [18]. The 

model was then compared to other methods and portrayed its benefits in the 

detection of muscle activity. It achieved reasonably fair performance in the 

distinction of muscle activation from the background noise, and its applicability was 

evaluated on simulated and real EMG signals. The results revealed that the LSTM 

model performed better in detecting muscle activation. 

A framework for the real-time spatiotemporal analysis of tennis on standard 

hardware was demonstrated [19]. It applied DL above all through enlarged neural 

networks (NNs). The recognition module integrated the CNN and the dilated 

recurrent neural network (RNN)for achieving successful spatiotemporal feature 

modeling. The hard class mining technique was developed to enhance the learning 

capacities and communication between the prediction and recognition modules. 

Therefore, action identification and prediction with the use of LSTM architecture 

along with generative adversarial network (GAN) produced better accuracy, recall, 

F1-score, and precision. Activity recognition from human beings employing bio 

signals acquired with a smart knee bandage was examined [20]. A Deep Recurrent 

Neural Network (DRNN) was developed for biosensor-based activity recognition 

from human beings using activity recognition. To evaluate its performance, 

numerous measurements from the given bio-signatures of participants on 22 daily 

tasks were employed. Several cross-validation techniques were employed in the 

systems’ testing and training. The results showed superior F1-score values and 

increased accuracy. 

For training disabled persons for the Para Olympics, a framework was designed 

[21] using VR-assisted effectively in augmentative communication. The framework 

utilized several biosensors that could track the physiological parameters of a body at 

various simulated conditions using VR technology. It allowed for the presentation of 

an interactive real-time environment for persons who were disabled. The framework 

was validated based on optimization parameters. Simulation results demonstrated 

that the model enhanced players’ confidence, sports knowledge, and response time, 

and reduced error rates. A CNN-based human pose recognition algorithm was 

employed [22] to overcome technical limitations in sports management systems, in 

particular in the module for sports recognition classification. Feature extraction, 

feature selection, choice of support vector machine model functions, and principal 

component analysis were all considered in the research. The recognition algorithm 

was used to optimize the parameters and structure of the CNN, and a motion 
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management system was developed. As the results indicated, the method provided 

preferable theoretical insights and has better practical significance. 

An epidemic prevention and control model was designed using a wristband 

system combined with CNN [23]. The system collected and processed users’ 

physiological data, especially in PE, and used human action recognition (HAR) to 

give immediate feedback and personalized training suggestions. To monitor 

variations in joint action, a dynamic recurrence plot was adopted. One-dimensional 

acceleration data is transformed into two-dimensional pictures of acceleration for 

feature extraction purposes. For recognition, the model showed improved precision 

and algorithm speed by integrating streamlines in feature extraction along with 

remote physical instructions. The multi-attribute fuzzy evaluation model (MAFEM) 

was designed for monitoring students’ health and physical activity using sensor data 

[24]. The model used the theories of fuzzy sets and fuzzy logic to establish 

relationships among various features. It applied preprocessing, fuzzification, 

defuzzification, and evaluation of rules that can be adjusted based on threshold 

values to enhance personalization and efficiency. With the MM-Fit dataset, the 

system showed low computation complexity and latencies, with even better accuracy 

metrics in terms of precision and decent mean squared error (MSE) values. 

More participants per study improve statistical power, enables the use of 

various data analyses, with sports mechanics, and enables the identification of more 

complex and subtle variables. Additionally, the total quantity of studies has 

skyrocketed [25]. Even the more difficult ones, like player-on-player consequences, 

have some emerging research, but the majority of sports actions are eligible to be 

examined to some degree. They have a deeper comprehension of the biomechanics 

of sporting approaches in a variety of sports. 

Sports strategies and tactics are evaluated as part of biomechanical assessment. 

Quality is described by the qualitative way of analysis despite the use of numerical 

data. Numbers are used in the gathering, measuring, and assessment of data in the 

qualitative analytical approach [26]. Players and trainers can only accurately of 

performances on average. Informing participants and instructors about sport skill 

practices that will enable them to achieve optimal athletic success is the aim of sport 

biomechanics. 

Research gaps 

The existing research on biosensor-based movement analysis and personalized 

physical education reveals several gaps. A lot of research focuses on how to integrate 

biosensors and AI for movement tracking, but most of them face limitations of 

inadequate real-time feedback, the inability to adapt to students’ needs, and higher 

costs of implementation. Further, while numerous ML models have appeared 

promising, limited work has been done on developing advanced optimization 

algorithms to boost the model’s accuracy. And there is very minimal effort to make it 

work on diverse and noisy sensor data in a dynamic educational environment. The 

proposed RSA-ELSTM model aims at improving prediction accuracy with real-time 

movement analysis, and personalized feedback, ultimately overcoming existing 

limitations in optimizing biosensor-based physical education systems. 
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3. Methodology 

The proposed RSA-ELSTM model is designed to develop the plan of teaching 

in charge of a biosensor for the area of PE. This approach combines data collection, 

preprocessing, feature extraction, and RSA-ELSTM model construction to improve 

movement analysis and generate timely feedback. The general workflow for the 

RSA-ELSTM model is presented in Figure 2. 

 

Figure 2. Proposed system architecture. 

3.1. Data collection 

Two distinct datasets were utilized to develop the education plan and movement 

analysis using biosensor technology in PE. 

• Motion Capture Dataset 

The motion capture dataset includes high-definition video footage of students 

performing various physical activities. High-resolution photographs of students 

engaging in a variety of sporting events make up the motion capture collection. Real-

time tracking of joint locations and body motions by particular cameras yields 

comprehensive information on movement and stance effectiveness. This information 

is essential for assessing students’ biomechanics and determining how well they 

execute particular actions. It can be utilized to pinpoint problem areas and maximize 

the effectiveness of movement by providing insights into the functioning of the body. 

This information is essential for delivering tailored feedback to learners, boosting 

their athletic results, and encouraging their growth in sporting activities and other 

relevant subjects. 

• eSports Sensor Dataset 

The publicly accessible Kaggle platform is the source of the eSports sensor 

dataset, which includes information gathered from 10 players over 22 League of 

Legends games. It contains a variety of sensor readings that provide a thorough 

picture of the players’ mental and physical states while they are playing, including 

heart rate, muscular activity, eye gazing, and electroencephalography (EEG). The 

dataset is intended to evaluate the relationship between players’ cognitive 

competence, as demonstrated by EEG and eye gaze data, and their outward physical 

engagement, as measured by heart rate and the contraction of muscles. Players’ 
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tactics, training, and general well-being can be improved with the help of this data, 

which is useful for comprehending how physical and psychological conditions affect 

the performance of eSports. The results of this dataset can be used to tailor training 

programs and feedback in PE settings, enhancing students’ physical and mental 

preparedness participation in competitive settings. This presents fresh chances to 

improve efficiency in eSports and other fields. The dataset link is as follows: 

https://www.kaggle.com/datasets/mexwell/esports-sensors-dataset. 

3.2. Data preprocessing 

In this methodology, key preprocessing steps, such as image resizing and 

normalization, are used. It improves model performance by minimizing 

computational complexity and providing uniform input for advanced feature 

extraction and analysis. It reduces the computational complexity and preserves 

essential features of the data for movement analysis. 

• Image Resizing 

Image resizing is an essential preprocessing technique Images are resized to a 

certain dimension used to ensure input images are in a consistent size. The motion 

capture data used in this work consists of video footage, which is hard to process. By 

resizing the images to 100 × 100 pixels, it provides a good tradeoff between 

computation power and important motion details. Bicubic interpolation for the 

resizing process is used so that the distortion can be minimized. Such techniques are 

designed to decrease the amount of computation to maintain adequate resolution 

quality for feature extraction, which is critical for real-time analysis of movement. 

• Normalization 

Normalization using Z-score normalization (ZSN) is performed to standardize 

the inputs and enhance the efficiency of the learning process on both the image and 

sensor data. For image data, normalization adjusts the pixel values to have zero mean 

and unit variance. And it helps to mitigate variations caused by lighting or 

inaccuracies in the sensor. Similarly, the sensor data is normalized to ensure that the 

values are scaled in a uniform range; hence the features can be compared across the 

entire dataset. It improves convergence during model training, making it easier for 

deep-learning models to learn patterns effectively. Equation (1) for ZSN is given 

below: 

𝑥𝑖,𝑗
′ =

𝑥𝑖,𝑗 − µ𝑖,𝑗

𝜎𝑗
 (1) 

where µ is the mean, 𝑥𝑖,𝑗
′  is the original pixel value,𝜎 is the standard deviation, and 

𝑥𝑖,𝑗
′  normalized pixel value of the 𝑗𝑡ℎ attribute. This step enhances the ability of the 

model to accurately analyze movement toward potentially improving individualized 

PE interventions. 

3.3. Feature extraction 

A well-established CNN architecture called visual geometric group-16 

(VGG16) is employed on both image and sensor data in this methodology for feature 

extraction. It is very effective in extracting meaningful patterns from input data, 

https://www.kaggle.com/datasets/mexwell/esports-sensors-dataset
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especially suited for analyzing complex movements by students in physical 

education. Then, the features extracted from the VGG16 are further analyzed by the 

RSA-ELSTM model to make a prediction analysis. This step was significant because 

it reduced the dimensionality of data and kept important movement information 

needed to make accurate predictions as well as give real-time feedback in 

educational contexts. 

• Convolutional Layers 

The VGG16 architecture takes images as inputs and applies numerous 

convolution layers. Every convolution layer takes an input where a 3 × 3 filter is 

applied, having a stride of 1 and padding of 1 to retain spatial resolution. Equation 

(2), is used to calculate convolution. 

𝑁𝑜𝑢𝑡 = [
𝑊𝑖𝑛 − 𝐹 + 2𝑃

𝑆
] + 1 (2) 

where 𝑊𝑖𝑛  is the input size, 𝐹 is the filter size, 𝑃  denotes padding, and 𝑆  denotes 

stride. 

• Max Pooling Layers 

After every convolution block, 2 × 2 max pooling is used with a stride of 2 to 

decrease the spatial dimensions of the feature maps. The size after pooling is 

determined using Equation (3). 

𝑊𝑝𝑜𝑜𝑙 =
𝑊𝑖𝑛

2
 (3) 

where 𝑊𝑖𝑛is the input size and 𝑊𝑝𝑜𝑜𝑙is the size after pooling. 

• Batch Normalization 

Batch normalization is used to stabilize the learning process after each 

convolutional block and it avoids overfitting. The normalization is done through 

Equation (4). 

�̂�(𝑘) =
𝑧(𝑘) − 𝜇𝑧(𝑘)

√𝜎2
𝑧(𝑘) + 𝜀

 (4) 

where 𝑧(𝑘) is the activation values,𝜇𝑧(𝑘) denotes the mean of activations,𝜎2
𝑧(𝑘) is the 

variance of activations, and𝜀 represents the small constant for numerical stability. 

• Output Feature Map 

The size of the output feature map is 5 × 5 × 512 and is further analyzed after 

passing through multiple convolution and pooling layers. 

• Pre-trained Weights 

The pre-trained weights of the VGG16 and image-net pre-trained on all data are 

used for optimization in feature extraction and also reduce the training data. The 

extracted feature becomes input to the RSA-ELSTM model to make predictions and 

analyses about students’ movements. 

3.4. Prediction model development 

The hybrid RSA-ELSTM model is developed using the RSA with an ELSTM 

network for parameter optimization to obtain improved accuracy in movement 

prediction. 
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3.4.1. Resilient sailfish algorithm-tuned enriched long short-term memory 

(RSA-ELSTM) hybrid model 

In RSA-ELSTM, real-time feedback is provided in the PE field through this 

model by incorporating data captured from the motion capture process and also using 

the sensor dataset. An RSA optimizes the parameters of the ELSTM model by 

correcting the noise and variability encountered in data. The enhanced feature fusion 

layer combines sensor data to better represent complex patterns of movement. This 

hybrid model can process historical data as well as real-time data to predict future 

movement. The integration of the data with DL enables personalized feedback and 

adaptive interventions. Continuous monitoring of performance is portrayed as a 

result of biosensors and the RSA-ELSTM method ensures high accuracy even for 

varying types of movements. This hybrid approach eradicates some of the biosensor 

technologies’ current constraints while optimizing personalized education. 

3.4.2. ELSTM 

ELSTM is applied to inspect movement data monitored through biosensors in 

PE environments. ELSTM is an extension of a traditional LSTM model, which 

enlists rich features from multimodal sensor inputs and improves the more accurate 

real-time movement analysis. 

• Model Structure 

The ELSTM architecture processes real-time data to make accurate forecasts 

and evaluate patterns in movement. The integration, through ELSTM, of data from 

several sensor inputs provides deeper insights regarding the dynamics by which 

students move through any session of PE. This model employs a set of gates and 

memory units in the learning process to memorize movement sequences over time 

for effective prediction of movements and providing actionable feedback. Figure 3 

provides the architecture of ELSTM. 

 

Figure 3. Architecture of ELSTM. 

The core components of the ELSTM model are derived from the standard 

LSTM equations, but with additional data fusion layers to handle enriched sensor 

inputs. The following equations define the operations of the ELSTM unit. 

1) Forget Gate (gT) 
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The forget gate controls the amount of the previous memory that should be 

reserved. 

𝑔𝑇 = 𝜎(𝑉𝑓 × 𝑥𝑇[ℎ𝑇−1 × 𝑄𝑓] + 𝐵𝑓) (5) 

where𝑥𝑇 is the current sensor input,𝐵𝑓is the bias term, ℎ𝑇−1is the hidden state from 

the previous time step, and 𝑉𝑓 and𝑄𝑓are the weights for the forget gate. 

2) Input Gate (jT) 

The input gate governs how much of the candidate memory should be added to 

the memory cell. 

𝑗𝑇 = 𝜎(𝑉𝐼 × 𝑥𝑇[𝐻𝑇−1 × 𝑄𝐼] + 𝐵𝐼) (6) 

3) Candidate Memory Cell (m̂T) 

The candidate memory cell is computed using the tanh activation function. 

�̂�𝑇 = tanh(𝑉𝑚 × 𝑥𝑇[𝐻𝑇−1, 𝑄𝑚] + 𝐵𝑚) (7) 

4) Memory Cell Update (mT) 

The memory cell is updated by combining the forget and input gates with the 

candidate memory. 

𝑚𝑇 = 𝑔𝑇 × 𝑚𝑇−1 + 𝑗𝑇 × �̂�𝑇 (8) 

5) Output Gate (pT) 

The output gate calculates the hidden state output from the updated cell state. 

𝑝𝑇 = 𝜎(𝑉𝑜 × 𝑥𝑇[𝐻𝑇−1 × 𝑄𝑜] + 𝐵𝑜) (9) 

6) Hidden State (HT) 

In the final step, applying the output gate to the cell state yields the hidden state 

𝐻𝑇. 

𝐻𝑇 = 𝑝𝑇 × tanh (𝑚𝑇) (10) 

• Enhanced Feature Fusion Layer 

The multi-dimensional input from sensors can better be handled through an 

enhanced feature fusion layer that combines such inputs prior to feeding them into 

ELSTM. This aggregation layer combines multiple sensors for data aggregation with 

the idea of providing more enriching and inclusive input representation. The 

aggregation is expressed in Equation (11). 

𝑥𝑡
𝑓𝑢𝑠𝑖𝑜𝑛

= 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥𝑡
𝑠𝑒𝑛, 𝑥𝑡

𝑚𝑜𝑡𝑖𝑜𝑛) (11) 

where𝑥𝑡
𝑠𝑒𝑛and 𝑥𝑡

𝑚𝑜𝑡𝑖𝑜𝑛are the data from the biosensor and motion capture systems. It 

also ensures that all information sensed by the sensors falls in as a single vector that 

increases the model’s chances to learn complex movement patterns. 

• Model Output 

The final output from the ELSTM model is to predict the state of a student’s 

movement, thus allowing for instant evaluation. The output most likely forms a 

probability distribution of several categories of movement, or perhaps a performance 

score. It denotes how perfectly a student is performing certain physically oriented 

tasks and it is calculated by using Equation (12). 
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�̂�𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦 × 𝐻𝑇 + 𝐵𝑦) (12) 

�̂�𝑇 Represents the predicted output, 𝑊𝑦 is the output layer weight matrix, and 

𝐵𝑦 is the output bias term. 

3.4.3. Resilient sailfish algorithm (RSA) 

The RSA represents an advanced version of the Sailfish Optimizer (SFO), 

developed to potentially enhance prediction accuracy and performance. The RSA 

features a dynamic exploration-exploitation balance of the SFO with resilience 

mechanisms for more robustness. Inspired by the cooperative hunting strategies of 

sailfish, the algorithm uses a population of sailfish(𝑀) to explore and exploit the 

search space for movement prediction solutions. For every iteration, the sailfish 

generates updated positions using a fitness evaluation of both the sailfish and 

sardines as follows in Equation (13). 

𝑃𝑖(𝑡 + 1) = 𝑃𝑖(𝑡) + 𝛼 × (𝑃𝑒𝑙𝑖𝑡𝑒 − 𝑃𝑖(𝑡)) + 𝛽 × (𝑃𝑠𝑎𝑟𝑑𝑖𝑛𝑒 − 𝑃𝑖(𝑡)) (13) 

where 𝑃𝑖(𝑡)denotes the position of the 𝑖𝑡ℎsailfish at time 𝑡 (𝑖 = 1,2, … , 𝑀), 𝑃𝑒𝑙𝑖𝑡𝑒is 

the best sailfish position identified so far. 𝑃𝑠𝑎𝑟𝑑𝑖𝑛𝑒  denotes the position of one 

randomly selected sardine, 𝛼 and 𝛽 are the coefficients that regulate exploration and 

exploitation influence. 

The adaptive strategy updates the sailfish’s movement dynamically with a 

balance between exploration (searching for new regions) and exploitation (refining 

its current region), by using Equation (14). 

𝑃𝑖(𝑡 + 1) = 𝑃𝑒𝑙𝑖𝑡𝑒𝜆(𝑡) × (𝑃𝑖(𝑡) − 𝑃𝑒𝑙𝑖𝑡𝑒) (14) 

where 𝜆(𝑡) is a decreasing coefficient that improves the solution progressively at 

each iteration due to the shrinking of the search space. 

The mechanism of resiliency in RSA works on the real-time computation of 

fitness values and adaptability of attack power (AP). When a sailfish’s AP is less 

than a threshold value, then it will select a sardine for updating the position using the 

Equation (15). 

𝐴𝑃 = 𝐴𝑚𝑎𝑥 × (1 − 2 × Iteration Factor) (15) 

where 𝐴 is a constant parameter controlling the aggressiveness of the attack,𝐴𝑚𝑎𝑥 is 

the maximum attack power parameter. The iteration factor adjusts according to the 

number of iterations, progressively refining the solution. The final update rule for 

sardines is as follows: 

Here, A is an aggressive attack control parameter,𝐴𝑚𝑎𝑥 is the parameter for 

maximum attack power. The iteration factor is the adjusting value depending on the 

number of iterations and it refines the solution successively. Finally, the update rule 

for sardines is provided in Equation (16). 

𝑃𝑠𝑎𝑟𝑑𝑖𝑛𝑒(𝑡 + 1) = 𝑟𝑎𝑛𝑑 × (𝑃𝑒𝑙𝑖𝑡𝑒 + 𝑃𝑠𝑎𝑟𝑑𝑖𝑛𝑒(𝑡) + 𝐴𝑃) (16) 

where 𝑟 𝑎𝑛𝑑 is a random factor between 0 and 1. This adaptive mechanism allows 

the sailfish to gradually converge to the optimal solution in cooperation with 

sardines. Also, it averts early convergence, which means RSA works particularly 
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well with real-time data for movement prediction. The steps involved in RSA are 

represented in Figure 4. 

 

Figure 4. Flow diagrams for resilient sailfish algorithm. 

3.4.4. RSA-ELSTM integration for movement prediction 

The hybrid approach of RSA with ELSTM is considered optimal for the 

analysis of motion capture and biosensor time-series data because RSA incorporates 

the optimization power along with the sequential learning capacity of LSTM. The 

LSTM network will be the one targeted to predict the next movement using the past 

movement records. This hybrid combination with RSA fine-tunes the parameters of 

the ELSTM for optimal predictive accuracy. The RSA hyperparameters used for 

enhancing the ELSTM performance are population size (N), exploration coefficient 

(α), exploitation coefficient (β), AP, and iteration factor. The loss function of the 

RSA-ELSTM network depends on MSE between the actual and predicted positions 

and is provided in Equation (17). 

𝐿𝑅𝑆𝐴−𝐸𝐿𝑆𝑇𝑀 =
1

𝑀
∑(𝑦𝑖 − �̂�𝑖)2

𝑀

𝑖=1

 (17) 
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Where 𝑦𝑖is the actual position of the student at the time 𝑖, 𝑀 is the total number 

of predictions, and�̂�𝑖is the predicted position at the time𝑖. Using the RSA-ELSTM 

hybrid model, this methodology enhances the real-time analysis of the student’s 

movement in the PE intervention to a more accurate and adaptable framework. 

Integrating RSA optimizes the ELSTM network toward improved performance and 

towards real-time prediction for movement patterns observed during PE activities. 

Table 1 depicts the hyperparameters for RSA-ELSTM. 

Table 1. RSA-ELSTM hyperparameters. 

Hyperparameter Value 

Population Size (𝑀) 50 

Exploration Coefficient (α) 0.9 

Exploitation Coefficient (β) 0.8 

Attack Power (AP) 0.7 

Iteration Factor Gradually adjusted, starting at 0.05 

The model improvement algorithm’s parameters are listed in this table. The 

number of potential solutions taken into account during refinement is indicated by 

the (M), which is set at 50. By setting the (α) and (β) to 0.9 and 0.8, accordingly, the 

search is balanced between finding novel solutions and taking advantage of ones that 

already exist. The AP is set at 0.7, which probably regulates how strongly solutions 

are adjusted. Finally, as the optimization method advances, dynamical tuning is made 

possible by the Iteration Factor, which is gradually modified from its initial value of 

0.05. The RSA and ELSTM networks are combined in the RSA-ELSTM-based 

Movement Prediction algorithm to forecast human movement patterns in physical 

education were shown in Algorithm 1. To increase the precision and effectiveness of 

movement prediction in dynamic learning environments, it uses RSA to optimize the 

model’s hyperparameters. 

Algorithm 1 RSA-ELSTM-based Movement Prediction in Physical Education 

1: Step 1 Initialize parameters for RSA and ELSTM 

2: Initialize RSA population (sailfish positions) 

3: Initialize the LSTM model with random weights 

4: Step 2 Data Preprocessing 

5: for each image in the dataset: 

6: Resize(image, 100x100) 

7: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑖𝑚𝑎𝑔𝑒  = 𝑥𝑖,𝑗
′ =

𝑥𝑖,𝑗−µ𝑖,𝑗

𝜎𝑗
 

8: Step 3 Feature Extraction using VGG16 

9: For each image: 

10:     Apply VGG16 convolution layers to extract features 

11:     Apply max pooling to reduce spatial dimensions 

12:     Normalize features �̂�(𝑘) =
𝑧(𝑘)−𝜇

𝑧(𝑘)

√𝜎2
𝑧(𝑘)+𝜀

 

13:     Extract the final feature map of size 5x5x512 

14: For each time step: 

15: 𝑥𝑡
𝑓𝑢𝑠𝑖𝑜𝑛

= 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥𝑡
𝑎𝑐𝑐 , 𝑥𝑡

𝑔𝑦𝑟𝑜
, 𝑥𝑡

𝑚𝑜𝑡𝑖𝑜𝑛) 

16: Step 4 Train the ELSTM model 
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Algorithm 1 (Continued) 

17: for each epoch: 

18:     For each time step t: 

19: 𝑔𝑇 = 𝜎(𝑉𝑓 × 𝑥𝑇[ℎ𝑇−1 × 𝑄𝑓] + 𝐵𝑓) 

20: 𝑗𝑇 = 𝜎(𝑉𝐼 × 𝑥𝑇[𝐻𝑇−1 × 𝑄𝐼] + 𝐵𝐼) 

21: �̂�𝑇 = tanh(𝑉𝑚 × 𝑥𝑇[𝐻𝑇−1, 𝑄𝑚] + 𝐵𝑚)  

22: 𝑚𝑇 = 𝑔𝑇 × 𝑚𝑇−1 + 𝑗𝑇 × �̂�𝑇  

23: 𝑝𝑇 = 𝜎(𝑉𝑜 × 𝑥𝑇[𝐻𝑇−1 × 𝑄𝑜] + 𝐵𝑜) 

24: 𝐻𝑇 = 𝑝𝑇 × tanh (𝑚𝑇) 

25: �̂�𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦 × 𝐻𝑇 + 𝐵𝑦) 

26: Step 5 Integrate RSA with ELSTM for optimization 

27: for each iteration of RSA:                                       

28: 𝑃𝑖(𝑡 + 1) = 𝑃𝑖(𝑡) + 𝛼 × (𝑃𝑒𝑙𝑖𝑡𝑒 − 𝑃𝑖(𝑡)) + 𝛽 × (𝑃𝑠𝑎𝑟𝑑𝑖𝑛𝑒 − 𝑃𝑖(𝑡)) 

29: 𝑃𝑖(𝑡 + 1) = 𝑃𝑒𝑙𝑖𝑡𝑒𝜆(𝑡) × (𝑃𝑖(𝑡) − 𝑃𝑒𝑙𝑖𝑡𝑒) 

30:     if AP < threshold: 

31: 𝐴𝑃 = 𝐴𝑚𝑎𝑥 × (1 − 2 × Iteration Factor) 

32: 𝑃𝑠𝑎𝑟𝑑𝑖𝑛𝑒(𝑡 + 1) = 𝑟𝑎𝑛𝑑 × (𝑃𝑒𝑙𝑖𝑡𝑒 + 𝑃𝑠𝑎𝑟𝑑𝑖𝑛𝑒(𝑡) + 𝐴𝑃)  

33: Step 6 Hybrid RSA-ELSTM model training 

34: For each epoch: 

35: predictedpositions = ELSTMpredict(𝑥𝑡
𝑓𝑢𝑠𝑖𝑜𝑛

)  

36: 𝐿𝑅𝑆𝐴−𝐸𝐿𝑆𝑇𝑀 =
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1  

37:     Update model parameters using RSA to minimize loss 

38: Step 7 Final Output 

39: Output the predicted student movement categories or performance score direct indicator of its influence and 

dissemination within the technological field.” 

4. Results and analysis 

This section provides a detailed analysis of the performance of the RSA-

ELSTM model. The performance measures of predicting student movements are 

measured in terms of several important metrics, and giving feedback tailored to 

students. 

4.1. Experimental setup 

The computer with the Intel Core i5 processor with 16 GB of RAM and 512 

GB of SSD is part of the setup for the experiments. Python 3.8 is used for this 

entails using biosensors to gather data on learners’ athletic abilities in real-time, and 

then evaluating the data to tailor and improve instructional methods. The objective 

is to improve overall learning results, fitness, and each student’s participation in 

sporting activities. The experimental setup for RSA-ELSTM would be allowed by 

using high-definition cameras and the motion capture system for students’ movement 

recognition. Biosensors capture physiological signals. These were preprocessed in 

the language Python by making use of libraries like NumPy, OpenCV, and 

TensorFlow during resizing, normalization, and training. High performance in 

computing is employed in a computational process since a large quantity is involved. 

4.2. Performance analysis 

The RSA-ELSTM models’ performance was evaluated using standard metrics. 

Below are the results for recall, accuracy (Acc), F1-score, and precision (Prec). 

Accuracy is the correctness of the movement prediction done by the RSA-ELSTM 
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model in personalized PE. Precision measures how well the model can identify 

specific movements without false positives. Recall measures how well the model 

detects all instances of a specific movement type. F1-score is the harmonic mean of 

precision and recall that provides an even level of evaluation over the performance 

of the model. Each metric is expressed in Equations (18)–(21). 

𝐴𝑐𝑐 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
 (18) 

𝑃𝑟𝑒𝑐 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 (19) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 (20) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐

𝑅𝑒𝑐
 (21) 

Here, 𝑇𝑝 is true positive, 𝐹𝑝 is false positive, 𝑇𝑛 is true negative, and 𝐹𝑛 is false 

negative. The RSA-ELSTM model demonstrated exceptional performance in these 

metrics and Table 2 summarizes the resultant values. 

Table 2. Performance of RSA-ELSTM. 

Metrics RSA-ELSTM [Proposed] 

F1-score 99.1% 

Accuracy 99.3% 

Recall 98.7% 

Precision 99.2% 

The effectiveness metrics for the suggested RSA-ELSTM model are shown in 

this table. Outstanding overall capacity for forecasting is indicated which shows a 

solid combination of precision and recall. The model’s that it can produce precise 

projections with few errors. The model’s great capacity to accurately identify 

affirmative cases is demonstrated. The further validates the model’s accuracy and 

dependability by demonstrating how well it reduces inaccurate results. The proposed 

RSA-ELSTM shows promising performance with 99.1% F1-score, 99.3% accuracy, 

98.7% recall, and 99.2% precision. These results indicate that the RSA-ELSTM 

model performs highly accurately, it also has an effective balance between precision 

and recall, thus ensuring reliable movement prediction and personalized feedback in 

the course of physical education. 

4.3. Comparative analysis 

The proposed RSA-ELSTM model is compared with the Internet of Things 

physical activity monitoring device (IOT-PAMD) [27], CNN-LSTM [28], and LSTM 

[29], popular models that were used for equivalent tasks. The comparison is done on 

the accuracy and F1-score level. The results are presented in Table 3 and visualized 

in Figure 5. The accuracy and F1-score of multiple models are compared in this 
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table. The usefulness of the suggested model is demonstrated by its exceptional 

performance, which yields superior outcomes across both measures. A different 

model that performs well but falls just short of the suggested strategy yields the 

second-best outcome. Lower accuracy and F1 scores are displayed by other models, 

suggesting less dependable or consistent recommendations. Overall, the table 

highlights how the suggested model outperforms current techniques. 

Table 3. Numerical outcomes of F1-score and accuracy values 

Model F1-score (%) Accuracy (%) 

IOT-PAMD [27] 92.2 98.3 

CNN-LSTM [28] 98.8 98.7 

LSTM [29] 94 97.5 

RSA-ELSTM [Proposed] 99.1 99.3 

 

Figure 5. Comparison of accuracy and F1-score values. 

When compared to alternative approaches, the Proposed Framework performs 

better, achieving the highest possible values for both metrics. The framework’s 

appropriate ability to anticipate is demonstrated by an even relationship between 

accuracy and F1-score. Overall, the graph demonstrates the benefit of using the 

Proposed Framework to complete the assignment efficiently. The RSA-ELSTM 

model outperforms all compared models; achieving the highest accuracy (99.3) and 

F1 score (99.1%). This demonstrates RSA-ELSTM’s greater ability to forecast 

student movements accurately. Table 4 describes the RSA-ELSTM with IOT-PAMD 

[27], CNN-LSTM [28], and LSTM [29] models and the results are depicted in 

Figure 6. 

Table 4. Numerical outcomes of recall and precision values 

Model Recall (%) Precision (%) 

CNN-LSTM [28] 97.5 99 

LSTM [29] 94.4 94.6 

RSA-ELSTM [Proposed] 98.7 99.2 
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Figure 6. Comparison of recall and precision values. 

Recall and precision measurements are used in this table to compare the 

efficiency of various models. In terms of recall and precision, the suggested RSA-

ELSTM algorithm performs well, proving that it can efficiently detect positive 

outcomes while reducing error rates. Second place goes to the CNN-LSTM 

approach, which performs well but marginally worse than the suggested model. 

Predictions from the LSTM model are less dependable due to its relatively lower 

recall and precision. All things considered; the table shows how well the RSA-

ELSTM model performs in comparison to the alternatives. The RSA-ELSTM model 

also shows the best recall (98.7%) and precision (99.2%) compared to the CNN-

LSTM and LSTM models. This indicates that RSA-ELSTM not only identifies 

movements with high sensitivity but also with minimal false positives. The 

performance of all models is comparable, the Proposed Framework obtains 

somewhat better results in both criteria. This suggests that the Provided Framework 

performs better in precisely forecasting and obtaining pertinent results. The steady 

development demonstrates the foundation’s superior accuracy and dependability over 

traditional techniques. 

5. Discussion 

The performance of RSA-ELSTM is compared with several existing established 

models, such as IOT-PAMD [27], CNN-LSTM [28], and LSTM [29]. The existing 

models have some disadvantages, which affect their performance in motion 

recognition. IOT-PAMD is a trustworthy model for movement prediction; however, 

it cannot track complex movement patterns as this model is mainly proposed to 

analyze sensor data. It cannot handle spatial-temporal dependencies in dynamic 

environments. CNN-LSTM performs well but fails to generalize across different 

movement types, especially in noisy or inconsistent data. LSTM is usually sensitive 

to the amount and quality of training data, making it less reliable in real-time 

applications where data can vary significantly in size and format. These problems are 

addressed by the RSA of the RSA-ELSTM model, which improves the robustness 

and optimization capabilities of the model in handling high-dimensional movement 

data. The improved results are achieved by effective tuning of the ELSTM network. 
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The RSA-ELSTM model efficiently handles complicated movements and data with 

multiple dimensions, providing notable benefits in motion identification. Under live 

applications, it performs better than current models, exhibiting more resilience and 

flexibility under changing conditions. Because of this, RSA-ELSTM is more 

dependable in identifying different kinds of mobility and producing precise findings 

in a range of situations. Compared to other models, such as IOT-PAMD, CNN-

LSTM, and LSTM, the RSA-ELSTM model has several advantages. RSA-ELSTM 

efficiently manages high-dimensional information, which makes it more resilient in 

dynamic contexts than IOT-PAMD, which has trouble with intricate patterns of 

motion and spatial-temporal interdependence. When it comes to handling noisy or 

incomplete information, RSA-ELSTM performs better than CNN-LSTM, which can 

have trouble generalizing across various movement patterns. Furthermore, RSA-

ELSTM’s utilization of the RSA method improves its optimization skills, enabling it 

to function dependably in instantaneous applications with changeable data quantities 

and designs, in contrast to LSTM, which depends on both the amount and quality of 

the training information. Because of these enhancements, RSA-ELSTM is a more 

versatile and effective motion recognition model. 

6. Conclusion 

The RSA-ELSTM model is developed for the analysis and instantaneous 

feedback providing for student group through real-time feedback in personalized PE. 

Originally, the data were collected and preprocessed by using image resizing and 

normalization. Further, VGG-16 was used to extract features effectively and the 

RSA-ELSTM model is implemented to precisely detect the arrangements. The 

incorporation of RSA into RSA-ELSTM provides a more efficient way to apply it to 

PE by resolving complex movement patterns and noisy data. It depicted improved 

performance on the tasks, indicating movement prediction, 99.1% for the F1-score, 

99.3% for accuracy, 98.7% for recall, and 99.2% for precision, in contrast with 

baseline and state-of-the-art models, including IOT-PAMD, CNN-LSTM, and LSTM 

models. The results prove that RSA-ELSTM strongly provides accurate feedback in 

motion recognition. Although this model excels in multiple performance metrics, its 

applicability in real-time would likely be influenced by hardware and environmental 

constraints in the implementation process. The model balances accuracy, precision, 

and recall to a very high degree and is ideal for providing personalized feedback in 

movement-based learning environments. Future work can be done to make it 

scalable and applicable in real-time in more diverse educational settings. 
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