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Abstract: Traditional e-commerce platforms have the problem that users cannot try on sports 

equipment in person, and it is difficult for consumers to perceive its size, comfort and dynamic 

performance before purchasing. This limitation leads to high return rates and difficult 

purchasing decisions. This paper introduces a virtual try-on solution with higher accuracy and 

more immersion. After using 3D scanning technology to obtain the user’s body data and 

combining it with SMPL (Skinned Multi-Person Linear Model) to generate the user’s body 

model, a posture optimization algorithm is used to adjust the dynamic posture of the user model 

and the PoseNet optimization model is used to adapt it to the user’s dynamic motion scenes. 

Next, Unity Physics is used to achieve the dynamic performance of sports equipment materials, 

high-definition texture mapping technology is used to reproduce the visual effects of equipment 

materials to ensure that the appearance is consistent with reality, and sports scenes are 

constructed to simulate the actual performance of equipment in different environments. Users 

can use motion capture devices to simulate running, jumping and other movements to feel the 

suitability of sports equipment. Then, based on the user’s body shape data and sports scene 

preferences, Deep Q-Learning is used to recommend sports equipment options suitable for the 

user. Finally, the system adjusts the virtual try-on experience in real time, showing a variety of 

combination effects, helping users quickly find their favorite products. Experiments show that 

the performance error between virtual equipment and real equipment is only 1.35%, the virtual 

try-on pass rate exceeds 90%, and the return rate is less than 10%, which verifies the feasibility 

of virtual reality technology in e-commerce and improves users’ online shopping experience. 

Keywords: virtual try-on technology; 3D scanning technology; sports equipment; human pose 

estimation; recommendation algorithm 

1. Introduction 

With the rapid development of e-commerce, the number of online shopping users 

around the world continues to grow, especially in the field of clothing and sports 

equipment. Consumers have shown great interest in the convenience and diverse 

choices of online shopping. However, compared with offline shopping, online 

shopping still faces shortcomings that cannot be ignored, especially in terms of “try-

on experience” [1–3]. Consumers cannot try on products in person to feel their size, 

comfort and dynamic performance (such as the cushioning of running shoes or the 

elasticity of sportswear). This not only increases the risk of shopping, but also leads to 

a significant increase in return rates. For example, according to relevant statistics, the 

average return rate of clothing and footwear is as high as 30%–40%, most of which is 

related to the mismatch between user expectations and actual product performance. To 

address this problem, virtual reality (VR) technology provides a new solution for the 

e-commerce field due to its immersive, interactive and multi-sensory features [4–6]. 

VR creates a virtual environment that enables users to perceive and operate products 
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in three-dimensional space. Its application prospects, especially in the field of virtual 

try-on, have attracted much attention. However, although virtual reality technology 

has been applied to a certain extent, there are still many obstacles to its widespread 

promotion in the field of e-commerce [7–9]. For example, existing fitting solutions 

usually use general 3D modeling technology, which cannot accurately restore the 

user’s body characteristics, resulting in a deviation between the fitting results and the 

actual effect. In addition, the special properties of sports equipment (such as the 

cushioning effect of shoes and the breath-ability of clothing) are difficult to simulate 

through simple static displays, and users still find it difficult to fully perceive the 

dynamic performance of products. These problems limit the user experience of virtual 

try-on technology and its practical application value in the e-commerce field.  

In recent years, many researchers have explored the application of virtual reality 

technology in e-commerce, especially focusing on its potential in the field of virtual 

try-on. Scholar Hilken [10] studied the individual and combined impacts of AR 

(Augmented Reality) and VR on key marketing objectives to improve online 

experiential retail. While Billewar [11] focused on three-dimensional e-commerce 

technology, showing how VR and AR can help solve limitations and improve e-

commerce operations, augmented reality assistants and virtual store experiences. 

Kumar’s [12] research also introduced the social aspects of AR, the dark side of AR, 

customer engagement, the experiential value of AR, and the future research agenda in 

the field of AR marketing. However, despite the achievements of these studies, they 

still face some urgent problems. First, current virtual try-on platforms are insufficient 

in terms of body modeling accuracy, and the generated virtual user models often fail 

to fully reflect the user’s body details, such as body proportions and the accuracy of 

dynamic movements [13–15]. Secondly, the dynamic performance of sports 

equipment is often not realistically restored in virtual try-on due to the high complexity 

of modeling [16–18]. In addition, existing research lacks specificity in optimizing user 

experience and fails to fully combine user movement preferences and scene 

applicability to design trial solutions. These problems limit the in-depth application of 

virtual reality technology in e-commerce. 

In order to improve the above problems, researchers have tried to use a variety of 

technical means to improve the virtual try-on experience in recent years. For example, 

high-precision three-dimensional modeling technology based on the SMPL model 

(Skinned Multi-Person Linear Model) has been widely used in personalized body 

modeling [19–21]. The SMPL model can generate a virtual model that fits the user’s 

body shape by combining the key dimensions and posture data of the user, providing 

higher accuracy for the fitting process. At the same time, physical engine technologies 

based on Unity Physics and NVIDIA PhysX are gradually being introduced into the 

dynamic performance simulation of sports equipment [22–24]. These technologies can 

realistically reproduce the performance of equipment in dynamic motion, such as the 

shock absorption of shoes and the elasticity of clothing. In addition, deep learning 

technology and recommendation algorithms have also been applied in the field of 

virtual try-on [25,26]. By analyzing user data (such as body shape, purchase history, 

and sports preferences), recommendation algorithms can provide users with more 

targeted equipment options for further optimization. Although these methods have 

improved the authenticity and user satisfaction of virtual try-on to a certain extent, 
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they still have the following shortcomings: first, the system has limited performance 

capabilities for dynamic scenes and cannot simulate the effects of users using 

equipment in specific scenarios; second, the system has high requirements for 

hardware performance, and it is difficult for ordinary users to easily experience the 

virtual try-on function; third, the accuracy and efficiency of personalized 

recommendations still need to be improved [27–32]. Therefore, this paper introduces 

a solution that integrates multiple technologies to further enhance the application value 

of virtual reality technology in sports equipment fitting through the combination of 

high-precision modeling, dynamic performance simulation and personalized 

recommendation system. 

This paper aims to explore how virtual reality technology can play a greater role 

in the experience of trying on sports equipment in the e-commerce field, and solve the 

problems of low modeling accuracy, insufficient material performance and lack of 

dynamic scene experience in existing research [33–35]. This paper adopts the 

following methods to achieve the research objectives: first, based on the SMPL model 

and three-dimensional scanning technology, high-precision modeling of the user’s 

body shape is achieved; second, the Unity Physics physics engine and PBR (Physically 

Based Rendering) technology are used to simulate the material and dynamic 

performance of sports equipment; finally, user preference analysis and personalized 

recommendations are achieved through deep learning recommendation algorithms 

[36,37]. In addition, this paper constructs a multi-scenario virtual try-on platform that 

allows users to truly experience the performance of sports equipment in a dynamic 

environment. Through this research, this paper not only verifies the feasibility of 

virtual reality technology in e-commerce, but also provides new theoretical support 

and practical paths for improving users’ online shopping experience. 

2. Try-on implementation supported by virtual reality technology 

2.1. High-precision modeling of user body shape 

2.1.1. Data collection and equipment selection 

In the virtual reality sports equipment fitting experience, building an accurate 

user body model is crucial to ensure the authenticity of the fitting effect. In order to 

fully obtain the user’s body data, this study adopted a fusion strategy that combined 

structured light scanning technology and smartphone camera acquisition methods. 

Specifically, the structured light scanning device projects light onto the human body 

and receives reflected signals, efficiently capturing the three-dimensional contour 

details of the body surface and quickly generating detailed three-dimensional point 

cloud data (such as key indicators such as height, shoulder width, waist circumference, 

leg length, etc.), and is easy to operate. In addition, in order to improve the 

convenience and popularity of data collection, this paper also introduces smartphone 

cameras. With the help of their built-in depth perception function, the images captured 

by the camera are processed through algorithms to extract the user’s body features 

without the need for professional equipment. This flexible device combination strategy 

is designed to adapt to diverse application scenarios and device configurations, 

ensuring that data collection is both efficient and accurate, and reducing dependence 
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on specific hardware. 

Table 1 is a comparison of the body shape data collection effects of structured 

light scanning equipment, mobile phone cameras, and the combination of the two. The 

accuracy of structured light scanning equipment is much higher than that of mobile 

phone cameras, with a height error of only ± 0.5 cm, while the height error of mobile 

phone cameras can reach ± 2.0 cm. The measurement errors of the structured light 

device for shoulder width, waist circumference, and leg length are also very small, at 

± 0.3 cm, ± 0.4 cm, and ± 0.6 cm respectively. The acquisition time of the mobile 

phone camera is longer, at 30 seconds, while the structured light scanning device takes 

15 seconds. After combining the two, the accuracy is optimized, with a height error of 

± 0.3 cm. This proves that by choosing the appropriate acquisition method, the 

accuracy and efficiency of data in the virtual try-on experience can be optimized for 

different scenarios. 

Table 1. Body shape data collection results. 

Collection Method 
Height (cm) 

Error 

Shoulder Width 

(cm) Error 

Waist (cm) 

Error 

Leg Length 

(cm) Error 

Data Collection 

Time (seconds) 
Device Type 

Structured Light Scanner ± 0.5 ± 0.3 ± 0.4 ± 0.6 15 Professional Hardware 

Smartphone Camera (Depth 

Sensing) 
± 2.0 ± 1.5 ± 2.2 ± 1.8 30 

Smartphone (No 

Specialized Hardware) 

Structured Light Scanner + 

Smartphone Camera 
± 0.3 ± 0.2 ± 0.16 ± 0.5 20 Combined Approach 

The introduction of a depth camera can improve the accuracy of body shape data 

by obtaining the three-dimensional depth information of the user’s body. The depth 

camera captures the spatial distance between the user and the equipment and 

reconstructs the user’s body shape more accurately, especially in dynamic scenes, 

which can reduce the error of traditional mobile phone cameras. The depth data is 

combined with the structured light scanning data and optimized through the data 

fusion algorithm to further improve the accuracy of body shape modeling and ensure 

the accuracy and stability of virtual try-on. 

2.1.2. Three-dimensional modeling and posture optimization 

After data collection is completed, the SMPL model is used for 3D human body 

modeling. The SMPL model is a parametric linear model that can generate a 3D virtual 

human body that conforms to human anatomical characteristics by collecting the 

user’s body shape data. Different from traditional static modeling, it can not only 

accurately represent the user’s body shape characteristics, but also support dynamic 

posture adjustment. As long as specific human body size information is input, the 

SMPL model can accurately generate the user’s virtual body shape. During the virtual 

try-on process, the model can also adjust the posture in real time according to the user’s 

movement dynamics. In order to further improve the modeling accuracy, this paper 

attempts to introduce a posture optimization algorithm to adjust the user’s dynamic 

data so that the generated virtual human model is more consistent with the user’s actual 

posture. This means that the user’s virtual model can not only accurately reflect their 

body characteristics in static conditions, but also adapt to different movements in real 

time during movement, such as running and jumping, allowing the posture 
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optimization algorithm to adjust the joints and muscle areas of the human model in 

real time as the user moves, to better match the user’s actual movements and improve 

the accuracy and interactivity of virtual try-on. 

Figure 1 shows the SMPL model for three-dimensional body modeling. By 

inputting parameters such as body size, the SMPL model can generate a three-

dimensional virtual body that conforms to the body characteristics of an adult male, 

and can be dynamically adjusted according to the user’s movement posture, and then 

used in application scenarios such as virtual try-on.  

 

Figure 1. SMPL model for three-dimensional body modeling. 

2.1.3. Dynamic optimization and personalized adjustment 

This paper further introduces the human posture estimation algorithm PoseNet to 

optimize the accuracy and dynamic adaptability of user human body modeling. As an 

algorithm based on deep learning, it can capture the user’s dynamic movements in real 

time through the camera and locate the user’s bone joints. Compared with traditional 

two-dimensional image processing methods, PoseNet can accurately restore the user’s 

movement details by calculating the user’s three-dimensional bone position data in 

real time and feed it back to the virtual try-on platform. 

According to Figure 2, PoseNet technology is not limited to static body capture, 

but can also track the user’s dynamic posture in real time, ensuring that the virtual 

body model maintains a high degree of consistency in various movements. Combined 

with the SMPL model, the dynamic adaptability of the virtual body shape is 

significantly enhanced, further improving the realistic experience of virtual try-on. 

This study also implements personalized body shape adjustment strategies, 

customizing virtual body shape models for each user based on their body shape and 

sports preferences. At the same time, the adaptability of sports equipment can be 

flexibly adjusted according to the user’s sports needs in different scenarios such as 

running, fitness, and outdoor activities. This personalized and precise adjustment not 

only optimizes the accuracy of the try-on, but also allows each user to enjoy a 

customized experience in the virtual try-on, significantly enhancing the immersion of 

the try-on.  
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Figure 2. Dynamic poses of the model. 

2.2. Dynamic simulation of sports equipment materials 

During the virtual try-on process, the material performance and dynamic 

performance of sports equipment are crucial to the user experience. In order to achieve 

a more realistic sports equipment fitting experience, this paper provides a high-

precision sports equipment material dynamic performance solution by combining 

physics engine, material rendering technology and dynamic performance simulation, 

aiming to truly reproduce the performance of sports equipment in dynamic scenes 

through the integration of physics and visual effects.  

2.2.1. Material performance and texture generation 

The material performance of sports equipment directly affects the user’s 

perception of the product. In order to efficiently generate realistic material effects, this 

paper uses Substance Painter software to generate high-precision textures of sports 

equipment. Substance Painter supports detailed texture painting of materials, which 

can provide rich details on each equipment surface, such as the reflection of the upper, 

the texture of the clothing and the glossiness of the material. The material texture data 

generated by Substance Painter can precisely control the visual effects of sports 

equipment to ensure that its performance under different lighting conditions is 

consistent with the actual product.  

In order to further improve the realism of materials, this study combines PBR 

technology. PBR technology can accurately reproduce the gloss, reflection, and 

roughness of objects in a virtual environment by considering the physical interaction 

between light and the surface of objects, providing a more realistic material 

perception. The leather surface of sports shoes can show natural reflective luster 

through PBR technology, while the fabric of sportswear can show breath-ability and 

elasticity. PBR technology is combined with the material texture generated by 

Substance Painter to ensure the natural presentation of equipment materials at different 

angles and lighting, greatly enhancing the visual realism in virtual try-on.  

2.2.2. Dynamic performance simulation 

Traditional virtual try-on often ignores the dynamic performance of sports 

equipment, while the dynamic characteristics of sports equipment, such as shock 
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absorption and elasticity, have a particularly important impact on sports performance. 

In order to simulate the performance of sports equipment in actual sports, this paper 

uses the Finite Element Analysis (FEA) model to simulate the dynamic performance 

of sports equipment. The finite element analysis method decomposes the equipment 

into multiple small units and analyzes its deformation, stress distribution and motion 

response under the action of external forces. In sports shoe simulation, FEA can 

accurately simulate the cushioning function of the sole, thereby ensuring that the shoe 

provides perfect shock absorption and comfort performance when the gait changes; in 

sportswear simulation, FEA is used to analyze the elasticity, stretch-ability and 

comfort of fabrics, helping users experience the flexibility and adaptability of sports 

equipment during exercise.  

 
(a)                                    (b) 

Figure 3. Pressure on the sole of the shoe during running and standing. (a) Pressure 

distribution on the sole of a running shoe; (b) Pressure distribution on the sole of a 

standing shoe. 

To ensure the accuracy of the simulation, the input data of the FEA model 

includes the user’s dynamic motion data and the actual material parameters of the 

equipment. The system simulates the performance of sports equipment in different 

sports scenarios by calculating the external pressure and the response of the equipment 

material. When running or jumping, the pressure distribution on the soles of sports 

shoes will directly affect the user’s comfort and athletic performance, and the 

stretching and rebound effects of sportswear will affect the smoothness and comfort 

of movement. Through finite element analysis, a dynamic simulation environment 

based on a physics engine can be provided to users, so that the performance of sports 
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equipment can be fully reproduced during the virtual try-on process.  

Figure 3 shows the pressure distribution of the soles of the running and standing 

states. The left figure of Figure 3 shows the pressure distribution of the soles of the 

running shoes. The pressure on the soles of the feet is relatively large when running, 

which is consistent with the force characteristics of the feet during exercise. The 

maximum pressure area on the sole when running reaches 200 Pa. The right figure in 

Figure 3 shows the pressure distribution on the sole when standing. It can be seen that 

the pressure when standing is significantly reduced compared to running, and the 

maximum pressure area is around 100 Pa. Through the two images, it is clearly seen 

that there is a significant difference in the pressure distribution of the soles in the sports 

state and the static state, which is of great significance for the comfort and performance 

testing of sports equipment.  

2.2.3. Real-time interaction and dynamic response 

Dynamic interactivity in virtual try-on is the key to enhancing user immersion. 

In order to achieve real-time response of equipment to user actions, this paper uses the 

Inverse Kinematics (IK) algorithm to dynamically control the equipment. The IK 

algorithm can accurately adjust the relative position and posture of the equipment 

based on the user’s real-time motion data, ensuring dynamic adaptation of the 

equipment to the user’s movements. 

Specifically, the IK algorithm analyzes the user’s skeletal joint data and the 

connection method between the virtual equipment, and calculates the optimal position 

and angle of the equipment in each frame in real time, thereby achieving 

synchronization between the equipment and the user’s movements. Taking sports 

shoes as an example, when the user runs, the IK algorithm will dynamically adjust the 

curvature of the shoes, the contact points between the soles and the ground, etc., so 

that the sports shoes show natural changes in dynamic scenes. For sportswear, the IK 

algorithm can simulate the wrinkles, stretching and other effects of clothing during 

exercise, thereby enhancing the authenticity of sports equipment under different sports 

movements.  

In addition, the inverse kinematics algorithm can also be combined with the 

physics engine in dynamic scenes to further optimize the dynamic response of the 

equipment. During actions such as running and jumping, the reaction force generated 

when the shoes come into contact with the ground will affect the dynamic performance 

of the equipment. During running or jumping, the reaction force generated when the 

sole contacts the ground will affect the dynamic performance of the equipment. FEA 

simulates the elasticity and cushioning effect of sports shoes in different sports 

scenarios by calculating the external pressure and the response of the equipment 

material. The linkage between the IK algorithm and the physics engine makes this 

process smoother and more natural, enhancing the user’s immersive experience in 

virtual try-on. By combining Substance Painter with PBR technology to generate high-

precision material textures, finite element analysis models to simulate dynamic 

performance, and inverse kinematics algorithms to control the dynamic response of 

equipment in real time, this paper constructs a comprehensive, multi-level dynamic 

simulation system for sports equipment. This system can truly reproduce the materials 

and performance of sports equipment in dynamic scenes, thereby providing users with 
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a more immersive and accurate virtual try-on experience, making up for the 

shortcomings of insufficient try-on experience in traditional e-commerce.  

2.3. Try-on experience in real scenarios 

2.3.1. Scene construction and virtual environment construction 

In virtual try-on, it is crucial to create a real virtual scene that matches user needs 

and sports equipment characteristics. In order to enhance the immersiveness of virtual 

try-on, this study used two advanced virtual engines, Unity and Unreal Engine, to build 

a real motion environment. Through these engines, various sports scenes such as 

running tracks, basketball courts, gyms, etc. can be accurately reproduced, providing 

users with a virtual experience similar to the actual sports environment.  

During the scene construction process, the virtual environment is first set up 

according to the usage scenarios of the sports equipment and user needs. For example, 

when simulating running, the Unity engine is used to create a long-distance running 

track or an outdoor running track to ensure that the track’s terrain, obstacles, etc. are 

consistent with the actual environment so that users can more realistically perceive the 

performance of sports equipment in the actual environment. To ensure the dynamics 

of sports scenes, real-time adjustment technology of lighting and weather effects is 

adopted, so that the light, shadow and weather conditions (sunny, cloudy or rainy) in 

the scene can change dynamically, thereby simulating the performance of sports 

equipment in different weather conditions in the sports environment.  

In this way, the sports scenes in the virtual environment can match the sports 

venues in the real world, enhancing the user’s immersion and experience. This highly 

restored environment setting not only enhances the authenticity of the virtual try-on, 

but also provides more realistic simulation conditions for the performance testing of 

sports equipment. Some users pointed out that scene lighting changes and weather 

effects have a significant impact on athletic performance during simulated running, 

and suggested enhancing the details of dynamic weather simulation. Based on this 

feedback, the system optimized the real-time adjustment of lighting and weather 

effects to ensure that the virtual scene is more realistic and natural. 

2.3.2. Motion capture and real-time synchronization 

In order to accurately map the user’s movements to the virtual character in the 

virtual scene, this paper combines OpenPose technology to capture and analyze the 

user’s real-time movements. OpenPose is a multi-person posture estimation algorithm 

based on deep learning, which can capture the user’s skeletal key point data through 

the camera, including the dynamic changes of joints, limbs, and torso. This study 

configures multiple cameras, and the image data provided by each camera is processed 

by the OpenPose algorithm to extract the user’s two-dimensional key point 

coordinates, and then convert these two-dimensional coordinates into positions in 

three-dimensional space through geometric reconstruction methods. It can capture the 

user’s posture changes from multiple angles in real time and provide dynamic motion 

trajectories. These data are fine-tuned through the posture optimization algorithm to 

ensure that the movements of the virtual character are highly synchronized with the 

user’s movements.  

Once these key point data are captured, the system will map them to the virtual 
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character in real time, allowing the virtual character to synchronize in real time 

according to the user’s actions. For example, when a user starts running, OpenPose 

can accurately track the user’s gait, leg bending angle, and range of motion, and feed 

this information back to the virtual character, so that the movement of the virtual 

character is completely consistent with the user’s actual movements. At the same time, 

the sports shoes and sportswear on the virtual character will be dynamically adjusted 

as the movements change, showing the adaptability and performance of the equipment 

during exercise in real time.  

Through OpenPose’s real-time motion capture and mapping technology, this 

paper effectively solves the problem of asynchrony between user movements and 

virtual characters during virtual try-on. Accurate motion capture and real-time 

synchronization ensure that users can experience feedback consistent with actual 

movements when trying on sports equipment in a virtual scene, improving the 

interactivity and accuracy of the try-on.  

Figure 4 shows the synchronization error and motion angle comparison between 

the user’s motion and the virtual character’s motion in the virtual try-on system. The 

bar graph on the left of Figure 4 shows the motion synchronization errors of 15 key 

points in degrees. The error values range from 1° to 2.5°, and the overall error is small, 

indicating that the system can synchronize the movements of the user and the virtual 

character well at most key points. The line graph in Figure 4 shows the angle change 

trend between the user and the virtual character at 15 key points. Overall, the 

movements of the user and the virtual character are highly consistent. Through these 

data analysis, it can be seen that the virtual try-on system can achieve good motion 

synchronization in most cases, but it still needs to be optimized at a few key points.  

 
(a)                                   (b) 

Figure 4. Comparison of synchronization error and motion angle between user motion and virtual character motion in 

the virtual try-on system. (a) Motion synchronization error at 15 key points; (b) Trend of angle changes between the 

user and the virtual character at 15 key points. 

2.3.3. Equipment performance testing and virtual experience 

Existing virtual fitting technology mostly relies on two-dimensional images or 
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simple three-dimensional modeling, and lacks accurate dynamic performance 

simulation and personalized recommendations. In contrast, this research method 

significantly improves the fitting accuracy and dynamic adaptability. 

Virtual try-on not only needs to focus on the appearance of the equipment, but 

also consider its performance in actual use. To achieve this goal, this study added 

equipment performance testing functions to the virtual scene, dynamically simulating 

the performance of sports equipment in various sports scenarios, such as the shock-

absorbing effect of shoes when running and the ventilation and breath-ability of 

sportswear.  

Specifically, the cushioning performance of sports shoes during the virtual try-on 

process is tested in real time through simulation of the physics engine. Every time the 

sneakers touch the ground, the physics engine calculates the reaction force between 

the sole and the ground, simulating the shock-absorbing ability and elasticity of the 

sole. Through this process, users can intuitively perceive the comfort and support of 

the shoes under different gaits. For sportswear, thermal flow simulation technology is 

used in a virtual environment to demonstrate the breath-ability and comfort of clothing 

during running or high-intensity exercise. By simulating air flow and clothing fabrics, 

the system can demonstrate the heat dissipation and drying effects of sportswear under 

different sports conditions.  

In addition, the dynamic physical effects in the virtual scene combine motion 

capture data with equipment performance simulation to ensure that the performance 

of the sports equipment when the user is exercising is highly consistent with the actual 

motion state. For example, when the user is running quickly, the dynamic performance 

of the virtual shoes will provide real-time feedback based on the user’s pace and 

landing force, presenting a more realistic cushioning effect and athletic performance. 

For sportswear, the ventilation effect of the clothing can be adjusted in real time 

according to the user’s exercise intensity and ambient temperature, allowing the user 

to perceive the adaptability of the clothing under different conditions.  

2.4. Personalized recommendation system 

2.4.1. User data analysis and clustering classification 

In the virtual fitting system, the core task of the personalized recommendation 

system is to provide each user with customized sports equipment recommendations 

based on the user’s body shape data, exercise habits and personal preferences. In order 

to achieve this goal, first of all, the user’s basic information and behavioral data need 

to be collected. These data include the user’s body parameters (such as height, weight, 

shoulder width, etc.), exercise habits (such as the type of exercise they often participate 

in, exercise intensity, exercise frequency) as well as purchase history and browsing 

behavior.  

During the data collection stage, this paper adopts the K-means clustering 

algorithm to conduct in-depth analysis and classification of user characteristics, 

aiming to classify users with similar exercise habits and body characteristics into the 

same group and build a diversified user cluster. For example, some users may be keen 

on running and cycling, while others may prefer fitness or basketball. By segmenting 

users, the system can gain a more accurate insight into user preferences and needs, and 
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provide more appropriate sports equipment recommendations for each user group. The 

results of cluster analysis lay a solid foundation for the recommendation system. The 

system can provide more suitable recommendations by comparing the user’s exercise 

type, intensity and equipment needs with similar user behaviors, effectively reducing 

the computational complexity and significantly improving improve the relevance and 

accuracy of recommendations.  

In Figure 5, this paper uses the K-means clustering algorithm to group 100 users 

according to their body parameters (height) and exercise intensity, forming 4 user 

groups. Each group represents a group of users with similar body shapes and exercise 

habits. The X-axis represents the user’s height, ranging from 150 to 200 cm, and the 

Y-axis represents the user’s exercise intensity, ranging from 0 to 10. Through analysis, 

it was found that people with a height of around 180 cm usually have a higher exercise 

intensity, while people with taller heights do not exercise at a very high intensity. The 

analysis found that their greater weight causes them to consume energy faster. The 

cluster center identifies the average body shape and exercise intensity of each group 

as the representative characteristics of the group. This clustering method helps the 

virtual fitting system to more accurately understand the needs and exercise habits of 

different users, thereby achieving personalized sports equipment recommendations 

and improving the relevance of user experience and recommendations.  

 

Figure 5. User body shape parameters and exercise intensity. 

2.4.2. Recommendation algorithm and precise matching 

Based on the user’s feature analysis, this paper combines the collaborative 

filtering algorithm and the content-based recommendation method to build a 

personalized recommendation model. The collaborative filtering algorithm analyzes 

the similarities between users and recommends sports equipment that other similar 

users like. For example, if user A and user B are similar in body shape, sports type, 
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etc., and user B purchases a pair of high-performance running shoes, the system may 

recommend the same running shoes to user A. Collaborative filtering can effectively 

capture the potential relationships between users and make recommendations based 

on these relationships, thereby improving the relevance of recommendation results and 

user satisfaction. On the other hand, content-based recommendation methods 

recommend sports equipment suitable for users based on the material, style, and 

function of the sports equipment. For example, if the system detects that the user 

prefers sportswear or running shoes with good breath-ability, the content-based 

recommendation method can recommend other equipment that meets the user’s needs 

based on the product’s breathable design, shock-absorbing function, etc. This 

recommendation method not only takes into account the user’s personal preferences, 

but also combines the specific attributes of the equipment to ensure the accuracy and 

diversity of the recommendations.  

2.4.3. Dynamic adjustment and real-time optimization 

The core mechanism of Deep Q-Learning in personalized recommendation is to 

dynamically adjust the recommendation strategy based on the user’s historical data, 

body size, sports preferences and other information through the reinforcement learning 

algorithm. The system continuously interacts with users to learn which sports 

equipment is most suitable for user needs in different scenarios, and evaluates the 

recommendation effect through the value function. 

In order to further optimize the personalized recommendation strategy, in 

addition to relying on users’ clicks, try-ons and purchase behaviors, the system also 

pays attention to users’ “dissatisfaction” signals, such as skipping recommendations, 

not trying on or leaving quickly. These negative feedbacks can help the system identify 

users’ true preferences and adjust the recommendation direction. At the same time, 

combined with sentiment analysis technology, by analyzing the emotional information 

in user comments or voice feedback, the system can better understand the user’s 

emotional changes, further improve the personalization and accuracy of 

recommendations, and thus improve user experience and purchase conversion rate. 

When a user shows a high interest in a pair of sneakers, the system will recommend 

more sports equipment with similar characteristics to the user. In this way, the 

reinforcement learning algorithm can gradually optimize the recommendation strategy 

so that the recommended content is more in line with the user’s needs and interests. 

Deep Q-Learning, as a reinforcement learning algorithm based on deep neural 

networks, can gradually learn the optimal recommendation strategy in multiple rounds 

by simulating multiple interactions and feedback. By constantly adjusting its 

strategies, the system can ensure the relevance of recommendations while also 

adapting to changes in user needs in real time, thereby continuously improving the 

personalization of the recommendation system. In Deep Q-Learning, Q-value is used 

to estimate the expected reward of taking a certain action in a certain state. The Q-

value is updated by the following Bellman equation, as shown in Equation (1):  

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡 + 𝛾max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)) (1) 

𝑠𝑡 is the current state (e.g., the user’s current interests or browsing history). 𝑎𝑡 
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is the current action (e.g., recommended sports equipment). 𝑟𝑡  is the immediate 

reward for the current action (e.g., feedback such as clicks, purchases, and tries on). 

𝛾 is the discount factor, which is used to control the impact of future rewards. 𝛼 is 

the learning rate, which is used to control the update amplitude of the Q value. 

max𝑎′𝑄(𝑠𝑡+1, 𝑎′) is the maximum Q value in the next state. Equation (1) is used to 

adjust the recommendation strategy based on the user’s real-time feedback (reward) 

so that future recommendations are more in line with the user’s interests. In Deep Q-

Learning, the goal of the system is to learn a state-action value function 𝑄(𝑠, 𝑎) , 

which represents the maximum cumulative reward that can be obtained after 

performing action 𝑎 in a certain state 𝑠. The Q function is the output of a deep neural 

network 𝑄(𝑠, 𝑎; 𝜃) , which represents the expected reward under the current 

parameters 𝜃, and the formula is as follows: 

𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃) = 𝔼 [∑ 𝛾𝑡

𝑇

𝑡=0

𝑟𝑡 ∣ 𝑠0 = 𝑠𝑡 , 𝑎0 = 𝑎𝑡] (2) 

𝑠𝑡  is the state of the system at the time step. 𝑎𝑡  is the action chosen by the 

system at the time step 𝑡 (such as recommending a certain product). 𝛾 is the discount 

factor, which is used to weigh future rewards. 𝑟𝑡 is the reward of the current time step 

(such as click, purchase, etc.). By optimizing the Q value, the system can learn how to 

choose the best recommended action under different user states, thereby improving the 

accuracy of recommendations. In Deep Q-Learning, the policy is optimized by 

selecting the action with the highest Q value, using Equation (3):  

𝜋∗(𝑠𝑡) = argmax
𝑎

𝑄(𝑠𝑡 , 𝑎; 𝜃) (3) 

𝜋∗(𝑠𝑡) is the optimal strategy given state 𝑠𝑡, that is, the product recommended 

to the user. argmax
𝑎

𝑄(𝑠𝑡 , 𝑎; 𝜃) means that in state 𝑠𝑡, action a that maximizes the Q 

value is selected, that is, the recommended content that is most likely to receive the 

highest reward. By continuously updating the Q value, the strategy gradually tends to 

be optimal, so that the recommendation system can adaptively adjust the 

recommended content according to the user’s real-time feedback, improving 

personalization and user experience.  

By further enhancing the diversity of the system, more diverse sports scenes and 

equipment options can be provided to users in the future, or scene simulations of 

different sports and displays of various styles of equipment will be added to meet the 

needs of different users. In terms of intelligence, by combining deep learning and 

behavioral analysis, the system can more accurately predict user preferences and 

optimize recommendation algorithms. Improvements in interactive design, such as 

adding voice control, gesture recognition or augmented reality (AR) interaction, will 

enhance user immersion and ease of operation. At the same time, cross-device 

compatibility is enhanced, allowing users to seamlessly experience virtual try-ons on 

different platforms (mobile phones, PCs, VR devices, etc.). Combining harsh 

environments and user-specific behavioral data (heavy snow, stormy weather, morning 

jogging, etc.), the accuracy of recommendations can be further improved, making the 

try-on experience more in line with actual needs, thereby improving user satisfaction. 
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3. Evaluation indicators of virtual fitting experience 

3.1. Accuracy of virtual body modeling 

In virtual body modeling, in order to ensure that the accuracy of the model 

matches the real user’s body shape, Chamfer Distance is used to evaluate the error 

between the virtual model and the real data. Chamfer Distance quantifies the 

difference between the two by calculating the average of the shortest distance and the 

reverse shortest distance from the surface points of the virtual body model to the real 

data point set. Specifically, first, the body data of the real user is compared with the 

generated virtual model to extract the key points of the surfaces of both. Then, the 

distance from each virtual model point to the nearest real data point is calculated, and 

the average of these distances is taken as the error indicator. By minimizing the 

Chamfer Distance, the details of the virtual model are precisely adjusted to ensure that 

it is highly consistent with the real body shape, thereby improving the accuracy of the 

virtual try-on experience.  

By calculating the shortest distance from the virtual point cloud to the real point 

cloud (virtual to real Chamfer Distance), and the shortest distance from the real point 

cloud to the virtual point cloud (real to virtual Chamfer Distance), this paper can 

quantify the matching accuracy between the two. As can be seen from Figure 6, the 

virtual-to-real error distribution is relatively concentrated, indicating that the distance 

between most virtual points and real points is small, indicating that the model has a 

high similarity with the real body shape. Statistics show that the Chamfer Distance 

from virtual to real is concentrated at around 0.15 meters, and the Chamfer Distance 

from real to virtual is also concentrated at around 0.15 meters. The error between the 

virtual body model and the real body shape is within 0.5 meters, which is in line with 

the body shape difference range of most users and can effectively support high-

precision virtual try-on experience. In general, by minimizing the Chamfer Distance, 

the accuracy of the virtual body model can be further improved, ensuring that the 

comfort and adaptability evaluation during the virtual try-on process is more accurate, 

thereby improving the quality of users’ shopping decisions.  

 

Figure 6. Chamfer distance error distribution between the virtual body model and 

the real data. 
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3.2. Material performance 

In the material performance evaluation, Substance Painter is first used to generate 

high-precision material textures for the equipment, combined with PBR technology to 

simulate the gloss, texture, and surface details of the equipment. Next, a material 

performance scoring system is used to quantify the appearance and dynamic 

consistency of the virtual equipment, comparing the performance of the virtual 

equipment in the virtual environment with the experimental performance of the real 

equipment in actual sports (such as the cushioning effect of sports shoes and the 

breath-ability of clothing). By calculating the performance differences between virtual 

and real equipment in different sports scenarios, the realism and dynamic 

responsiveness of virtual materials are optimized.  

According to the data in Figure 7, in the running scene, the gloss difference 

between the virtual equipment and the real equipment is small, only 1.5%, there is a 

lack of texture. In the cycling scene, the gloss error difference is 1%, the texture error 

difference is 1.1%, and the surface detail error is 0.7%, indicating that the virtual 

equipment’s performance of details in cycling is closer to that of real equipment. In 

general, the errors between virtual equipment and real equipment in terms of surface 

details, texture and gloss are small, with an average error of only 1.35%, which reflects 

that virtual equipment performs well in different sports scenarios.  

 

Figure 7. Performance errors of gloss, texture, and surface details between virtual 

equipment and real equipment in six motion scenes. 

3.3. User experience and conversion rate and return rate 

When evaluating the user experience, a questionnaire survey is first used to 

collect feedback from 100 users on the virtual fitting system, covering aspects such as 

fitting experience, fit and comfort of virtual equipment. Subsequently, data is collected 

and comprehensively analyzed based on the user’ s conversion rate and return rate. By 

analyzing the purchase conversion rate after users try on clothes, the accuracy of 
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system recommendations can be evaluated; the return rate reflects the user’s 

satisfaction with the virtual try-on results and the actual matching degree of the 

equipment. Through this combination of quantitative and qualitative methods, the 

overall satisfaction of users with the virtual try-on system is comprehensively 

evaluated.  

Table 2 presents the user experience evaluation results of the virtual try-on 

system in different sports equipment applications. Specifically, basketball shoes and 

cycling equipment receive the highest scores in the try-on experience, 4.5 and 4.4 

respectively, highlighting their popularity in the virtual environment. Cycling 

equipment performs particularly well in terms of fit and comfort, with a fit score of 

4.7 and a comfort score of 4.6, demonstrating its excellent body fit and comfort. In 

terms of purchase conversion rate, cycling equipment has the highest conversion rate, 

reaching 70%, indicating that its virtual try-on experience has a strong influence on 

purchase decisions. The overall return rate is below 10%, with cycling equipment 

having the lowest return rate (5%), indicating that the system has effectively reduced 

the risk of returns and improved user satisfaction. 

Table 2. User experience, conversion rate and return rate. 

Sports 

Equipment/Scene 

Try-on Experience Rating 

(1–5) 
Fit Rating (1–5) 

Comfort Rating 

(1–5) 

Purchase Conversion Rate 

(%) 

Return Rate 

(%) 

Running Shoes 4.2 4.5 4.3 60 8 

Basketball Shoes 4.5 4.6 4.4 65 6 

Gym Wear 4.3 4.4 4.2 58 9 

Running Wear 4.1 4.3 4.1 55 7 

Cycling Gear 4.4 4.7 4.6 70 5 

Soccer Shoes 4 4.2 4 50 8 

3.4. System response time 

In the response time evaluation, the time delay from user gesture, voice command 

and click operation input to system response is first measured. By using high-precision 

timing tools, the time it takes for 100 users to initiate an operation and then provide 

feedback in the virtual environment is recorded, so as to optimize the system 

architecture and algorithms to reduce latency.  

Table 3 shows the response time evaluation results of the virtual try-on system 

under different input methods. By measuring the response time in different sports 

equipment try-on scenarios, the average response time, maximum response time, 

minimum response time and pass rate under each input method (gesture, voice, click) 

are listed. The data shows that the click input method performs best in all scenarios, 

with the shortest average response time. For example, the response time when trying 

on cycling equipment is 78 ms, and the pass rate reaches 99%. In contrast, the 

maximum response time of gesture input when trying on fitness equipment is higher, 

reaching 110 ms, which is slightly worse. Overall, the average response time of all 

input methods is 88.7 ms, which is less than 100 ms. Its fast response speed also shows 

that the system performs well in terms of interactive fluency. The pass rate in most 

scenarios is over 90%, which reflects the efficient responsiveness of the virtual try-on 
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system under different input methods.  

Table 3. Response time of the virtual try-on system under different input modes. 

Test Scenario 
Input 

Method 

Average Response Time 

(ms) 

Maximum Response Time 

(ms) 

Minimum Response Time 

(ms) 

Pass Rate (< 100 

ms) 

Running Gear Try-

On 

Gesture 

Input 
85 95 75 98% 

Basketball Gear Try-

On 
Voice Input 92 105 80 96% 

Cycling Gear Try-

On 
Click Input 78 88 70 99% 

Fitness Gear Try-On 
Gesture 

Input 
100 110 90 94% 

Football Gear Try-

On 
Voice Input 95 105 85 97% 

Yoga Gear Try-On Click Input 82 90 74 99% 

4. Conclusion 

This paper proposes a sports equipment fitting solution based on virtual reality 

technology, aiming to solve the problem that users cannot truly experience products 

on traditional e-commerce platforms. Through 3D scanning technology, SMPL model 

and posture optimization algorithm, the user body model was successfully generated, 

and it was adapted to various motion scenarios through dynamic posture adjustment 

and PoseNet optimization. Combining Unity Physics and high-definition texture 

mapping technology, the system achieves dynamic performance and realistic 

appearance of sports equipment materials, reproducing the effect of the equipment in 

actual use. In addition, the Deep Q-Learning algorithm is used to recommend the most 

suitable sports equipment based on the user’s body shape and sports preferences. 

Experimental results show that the performance error between virtual equipment and 

real equipment is only 1.35%, the virtual try-on pass rate exceeds 90%, and the return 

rate is less than 10%, which verifies the feasibility of the system in e-commerce and 

effectively improves users’ online shopping experience. Although the method 

proposed in this paper has achieved certain results, there are still some shortcomings, 

such as the diversity of user scenarios and the personalized recommendation of virtual 

try-on experience may need to be further optimized. Future research can combine more 

data sources to improve the accuracy of personalized recommendation algorithms, and 

explore the combination of augmented reality technology and virtual try-on systems 

to further enhance user immersion and purchase decision efficiency.  
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