Gut microbiota affects aneurysms through biomechanical mechanisms: A mendelian randomization study
Abstract
Purpose: To assess any potential associations between gut microbiota (GM) and aortic aneurysm and cerebral aneurysm in biomechanics (AA and CA). Methods: We performed a two-sample Mendelian randomization (MR) to assess the causal association between GM and AA, CA. The inverse-variance weighted (IVW) model was used as the main analytical method and was followed by sensitivity analysis, including heterogeneity test, horizontal pleiotropy test, and leave-one-out analysis, to appraise the robustness of the MR results. Results: Our IVW results showed that RuminococcaceaeUCG005 [OR = 1.43, 95% CI (1.17,1.76), P = 0.000] and Roseburia [OR = 1.16, 95% CI (1.00,1.34), P = 0.049] were positively associated with AA, while Prevotella9 [OR = 0.81, 95% CI (0.68,0.96), P = 0.022] and RuminococcaceaeNK4A214 [OR = 0.72, 95% CI (0.57,0.89), P = 0.003] were negative. Meanwhile, we also found that Betaproteobacteria [OR = 1.53, 95% CI (1.08,2.17), P = 0.017], cCoriobacteriaceae [OR = 1.39, 95% CI (1.07,1.80), P = 0.012], Eggerthella [OR = 1.34, 95% CI (1.12,1.61), P = 0.002], Burkholderiales [OR = 1.59, 95% CI (1.11,2.28), P = 0.011], Dorei [OR = 1.19, 95% CI (1.01,1.40), P = 0.038] and Dorea [OR = 1.09, 95% CI (1.00,1.18), P = 0.044] were positively correlated with CA, and there was a negative association between Bifidobacteriales [OR = 0.73, 95% CI (0.57,0.95), P = 0.018] and CA. Sensitivity analysis showed no facts of reverse causality, pleiotropy, and heterogeneity. Conclusions: Our study demonstrates that RuminococcaceaeUCG005 and Roseburia are related to an increased risk of AA, Prevotella9, and RuminococcaceaeNK4A214 can reduce the risk of AA. On the other hand, Coriobacteriaceae, Eggerthella, Burkholderiales, Dorei and Dorea are related to an increased risk of CA, Bifidobacteriales can reduce the risk of CA. In addition, gut microbiota may affect the occurrence of aneurysms through biomechanical mechanisms such as the elasticity and strength of blood vessel walls.
References
1. Sakalihasan N, Limet R, Defawe OD. Abdominal aortic aneurysm. Lancet. 2005 Apr 30-May 6;365(9470):1577-89. doi: 10.1016/S0140-6736(05)66459-8.
2. Anagnostakos J, Lal BK. Abdominal aortic aneurysms. Prog Cardiovasc Dis. 2021 Mar-Apr; 65: 34-43. doi: 10.1016/j.pcad.2021.03.009.
3. Chen Y, Wright N, Guo Y, et al.; China Kadoorie Biobank Collaborative Group. Mortality and recurrent vascular events after first incident stroke: a 9-year community-based study of 0.5 million Chinese adults. Lancet Glob Health. 2020 Apr;8(4):e580-e590. doi: 10.1016/S2214-109X (20)30069-3.
4. Nieuwkamp DJ, Setz LE, Algra A, et al. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009 Jul;8(7):635-42. doi: 10.1016/S1474-4422(09)70126-7.
5. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015 May 13;17(5):565-76. doi: 10.1016/j.chom.2015.04.011.
6. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013 May;19(5):576-85. doi: 10.1038/nm.3145
7. Holmes E, Li JV, Marchesi JR, et al. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 2012 Nov 7;16(5):559-64. doi: 10.1016/j.cmet.2012.10.007.
8. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr 7;472(7341):57-63. doi: 10.1038/nature09922.
9. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013 Aug 29;500(7464):541-6. doi: 10.1038/nature12506.
10. Claesson MJ, Jeffery IB, Conde S,et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012 Aug 9;488(7410):178-84. doi: 10.1038/nature11319.
11. Hosaka K, Hoh BL. Inflammation and cerebral aneurysms. Transl Stroke Res. 2014 Apr;5(2):190-8. doi: 10.1007/s12975-013-0313-y.
12. Frösen J, Tulamo R, Paetau A,et al. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 2012 Jun;123(6):773-86. doi: 10.1007/s00401-011-0939-3.
13. Raffort J, Lareyre F, Clément M,et al. Monocytes and macrophages in abdominal aortic aneurysm. Nat Rev Cardiol. 2017 Aug;14(8):457-471. doi: 10.1038/nrcardio.2017.52.
14. Dale MA, Ruhlman MK, Baxter BT. Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy. Arterioscler Thromb Vasc Biol. 2015 Aug;35(8):1746-55. doi: 10.1161/ATVBAHA.115.305269.
15. Shikata F, Shimada K, Sato H,et al. Potential Influences of Gut Microbiota on the Formation of Intracranial Aneurysm. Hypertension.2019Feb;73(2):491-496. doi: 10.1161/HYPERTENSIONAHA.118.11804.
16. Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization. JAMA. 2017 Nov 21;318(19):1925-1926. doi: 10.1001/jama.2017.17219.
17. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014 Sep 15;23(R1):R89-98. doi: 10.1093/hmg/ddu328.
18. Ma J, Li J, Jin C, et al. Association of gut microbiome and primary liver cancer: A two-sample mendelian randomization and case control study. Liver Int, 2023, 43(1): 221-233. doi: 10.1111/liv.15466
19. Liu B, Ye D, Yang H, et al. Assessing the relationship between gut microbiota and irritable bowel syndrome: A two-sample Mendelian randomization analysis. BMC Gastroenterology, 2023, 23(1): 150. doi: 10.1186/s12876-023-02791-7
20. Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: An expanded tool for searching human genotype-phenotype associations. Bioinformatics (Oxford, England), 2019, 35(22): 4851- 4853. doi: 10.1093/bioinformatics/btz469
21. Vardulaki KA, Walker NM, Day NE, et al. Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. Br J Surg. 2000 Feb;87(2):195-200. doi: 10.1046/j.1365-2168.2000.01353.x.
22. Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Statistic Meth Med Res, 2012, 21(3): 223-242. doi: 10.1177/0962280210394459
23. Chen L, Yang H, Li H, et al. Insights into modifiable risk factors of cholelithiasis: A Mendelian randomization study. Hepatology, 2022, 75(4): 785-796. doi: 10.1002/hep.32183
24. Jia Y, Hui L, Sun L, et al. Association between human blood metabolome and the risk of psychiatric disorders. Schizophrenia Bulletin, 2023, 49(2): 428-443. doi: 10.1093/schbul/sbac130
25. Yavorska OO, Burgess S. Mendelian randomization: An R package for performing Mendelian randomization analyses using summarized data. Inter J Epidemiol, 2017, 46(6): 1734-1739. doi: 10.1093/ije/dyx034
26. Burgess S, Bowden J, Fall T, et al. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology, 2017, 28 (1): 30-42. doi: 10.1097/EDE.0000000000000559
27. Li B, HanY,FuZ,ChaiY,GuoX,DuS,etal.Thecausalrelationship between gut microbiota and lymphoma: a two-sample Mendelian randomization study. Front Immunol. (2024) 15:1397485. doi: 10.3389/fimmu.2024.1397485
28. Bowden J, Davey Snith G, Haycock P C, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016, 40(4): 304-314. doi: 10.1002/gepi.21965
29. Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Res.1693, 128–133. doi: 10.1016/j.brainres.2018.03.015
30. Xu, Q., Ni, J. J., Han, B. X., Yan, S. S., Wei, X. T., Feng, G. J., et al. (2021). Causal relationship between gut microbiota and autoimmune diseases: a two-sample Mendelian randomization study. Front. Immunol. 12:746998. doi: 10.3389/fimmu.2021.746998
31. Ling, X., Jie, W., Qin, X., Zhang, S., Shi, K., Li, T., et al. (2022). Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front. Cardiovasc. Med. 9:1063683. doi: 10.3389/fcvm.2022.1063683
32. Tian, Z., Zhang, Y., Zheng, Z., Zhang, M., Zhang, T., Jin, J., et al. (2022). Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host Microbe 30, 1450–1463.e8. doi: 10.1016/j.chom.2022.09.004
33. Marques Da Silva, R., Caugant, D. A., Eribe, E. R., Aas, J. A., Lingaas, P. S., Geiran, O., et al. (2006). Bacterial diversity in aortic aneurysms determined by 16S ribosomal Rna gene analysis. J. Vasc. Surg. 44, 1055–1060. doi: 10.1016/j.jvs.2006.07.021
34. Clifford, A., and Hoffman, G. S. (2015). Evidence for a vascular microbiome and its role in vessel health and disease. Curr. Opin. Rheumatol. 27, 397–405. doi: 10.1097/BOR.0000000000000184
35. Nelson, J. W., Phillips, S. C., Ganesh, B. P., Petrosino, J. F., Durgan, D. J., and Bryan, R. M. (2021). The gut microbiome contributes to blood-brain barrier disruption in spontaneously hypertensive stroke prone rats. FASEB J. 35:e21201. doi: 10.1096/fj.202001117R
36. Vega-Lopez GA, Cerrizuela S, Tribulo C, et al. Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol. 2018 Dec 1;444 Suppl 1:S110-S143. doi: 10.1016/j.ydbio.2018.05.013.
37. Liang J, Kou S, Chen C, et al. Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets. BMC Microbiol. 2021 Mar 22;21(1):85. doi: 10.1186/s12866-021-02143-z.
38. Zang C, Liu J, Mao M, et al. Causal Associations Between Gut Microbiota and Psoriasis: A Mendelian Randomization Study. Dermatol Ther (Heidelb). 2023 Oct;13(10):2331-2343. doi: 10.1007/s13555-023-01007-w.
39. Qin H, Yang F, Hao P, et al. Gut microbiota and cerebrovascular diseases: a Mendelian randomization study. Front Microbiol. 2023 Aug 10;14:1228815. doi: 10.3389/fmicb.2023.1228815.
40. Mohammad NS, Nazli R, Zafar H, et al. Effects of lipid based Multiple Micronutrients Supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pak J Med Sci. 2022 Jan-Feb;38(1):219-226. doi: 10.12669/pjms.38.1.4396.
41. Xiang K, Wang P, Xu Z, et al. Causal Effects of Gut Microbiome on Systemic Lupus Erythematosus: A Two-Sample Mendelian Randomization Study. Front Immunol. 2021 Sep 7;12:667097. doi: 10.3389/fimmu.2021.667097.
42. Voronina OL, Kunda MS, Ryzhova NN, et al. On Burkholderiales order microorganisms and cystic fibrosis in Russia. BMC Genomics. 2018 Feb 9;19(Suppl 3):74. doi: 10.1186/s12864-018-4472-9.
43. Cristina M. SABO, Dan L. DUMITRASCU, Microbiota and the irritable bowel syndrome [J], Minerva Gastroenterology 2021 December;67(4):377-84DOI: 10.23736/S2724-5985.21.02923-5.
44. Uusitupa HM, Rasinkangas P, Lehtinen MJ, et al. Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients. 2020 Mar 25;12(4):892. doi: 10.3390/nu12040892.
45. Manabe Y, Ishibashi T, Asano R, et al. Gut dysbiosis is associated with aortic aneurysm formation and progression in Takayasu arteritis. Arthritis Res Ther. 2023 Mar 24;25(1):46. doi: 10.1186/s13075-023-03031-9.
46. Klepinowski T, Skonieczna-Żydecka K, Pala B, et al. Gut microbiome in intracranial aneurysm growth, subarachnoid hemorrhage, and cerebral vasospasm: a systematic review with a narrative synthesis. Front Neurosci. 2023; 17: 1247151. doi: 10.3389/fnins.2023.1247151.
47. Kawabata S, Takagaki M, Nakamura H, et al. Dysbiosis of Gut Microbiome Is Associated With Rupture of Cerebral Aneurysms. Stroke. 2022 Mar;53(3):895-903. doi: 10.1161/STROKEAHA.121.034792.
48. Karbach SH, Schönfelder T, Brandão I, et al. Gut microbiota promote angiotensin II–induced arterial hypertension and vascular dysfunction. J. Am. Heart Assoc. 2016; 5: e003698. doi: 10.1161/JAHA.116.003698
49. Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferredself/tumor-specific CD8 + T cells via TLR4 signaling. J. Clin. Investig. 2007; 117: 2197–2204. doi: 10.1172/JCI32205
Copyright (c) 2024 Renjie Li, Yi Xu, Tao Cheng
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.