The research progress on sports applications in osteoarthritis

  • Xiongsi Tan Zhaoqing Medical University, Zhaoqing 526020, China
  • Ziyang Lin Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangzhou 510530, China
  • Junzheng Yang Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangzhou 510530, China
Keywords: osteoarthritis; sports; mechanisms; inflammatory response; oxidative stress; physical exercise
Article ID: 501

Abstract

 Osteoarthritis is a form of age-related, non-inflammatory, degenerative joint disease. It is characterized by pain, swelling, and bone hyperplasia; osteoarthritis has a high morbidity and high disability rate, which has a significant impact on the quality of life of patients worldwide. Engaging in sports has been demonstrated to reduce the risk of developing obesity, diabetes mellitus, and other metabolic diseases, additionally, it has been shown to enhance muscle quality, stabilize joints, improve motor coordination abilities, reduce pain and improve joint function in individuals with osteoarthritis, these findings highlight the potential for sports to play an important role in the management of osteoarthritis. In this review, we presented an overview of the pathogenesis of osteoarthritis, provided a summary of advancements in the utilization of sports in the management of in osteoarthritis, and discussed the underlying mechanisms and future application limitations, hope to provide the foundation for the prevention and treatment for osteoarthritis.

References

1. Jaimie D Steinmetz, Garland T Culbreth, Lydia M Haile, Quinn Rafferty, Justin Lo, Kai Glenn Fukutaki, et al. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol., 2023, 5(9): e508-e522.

2. Yu, H., Huang, T., Lu, W. W., Tong, L., & Chen, D. (2022). Osteoarthritis Pain. International journal of molecular sciences, 23(9), 4642.

3. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet, 2015, 386(9991):376-387.

4. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthritis. Nat Rev Dis Primers, 2016, 2:16072.

5. Gillian A Hawker, Lauren K King. The Burden of Osteoarthritis in Older Adults. Clin Geriatr Med., 2022, 38(2):181-192.

6. Jackie L Whittaker, Justin M Losciale, Carsten B Juhl, Jonas Bloch Thorlund, Matilde Lundberg, Linda K Truong, et al. Risk factors for knee osteoarthritis after traumatic knee injury: a systematic review and meta-analysis of randomised controlled trials and cohort studies for the OPTIKNEE Consensus. Br J Sports Med., 2022, 56(24):1406-1421.

7. Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C. Knee Osteoarthritis: Epidemiology, Pathogenesis, and Mesenchymal Stem Cells: What Else Is New? An Update. Int J Mol Sci., 2023, 24(7):6405.

8. Marriott KA, Birmingham TB. Fundamentals of osteoarthritis. Rehabilitation: Exercise, diet, biomechanics, and physical therapist-delivered interventions. Osteoarthritis Cartilage. 2023, 31(10):1312-1326.

9. Luan L, Bousie J, Pranata A, Adams R, Han J. Stationary cycling exercise for knee osteoarthritis: A systematic review and meta-analysis. Clin Rehabil., 2021, 35(4):522-533.

10. Abramoff B., Caldera F.E. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med. Clin. N. Am. 2020, 104:293–311.

11. Vincent T.L. Mechanoflammation in osteoarthritis pathogenesis. Semin. Arthritis Rheum., 2019, 49: S36–S38.

12. Na HS, Park JS, Cho KH, Kwon JY, Choi J, Jhun J, et al. Interleukin-1-Interleukin-17 Signaling Axis Induces Cartilage Destruction and Promotes Experimental Osteoarthritis. Front Immunol., 2020, 11:730.

13. Qu Y, Shen Y, Teng L, Huang Y, Yang Y, Jian X, et al. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int Immunopharmacol., 2022, 111:109129.

14. Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review. Life Sci., 2019, 234:116786.

15. Libin Ni, Zhen Lin, Sunli Hu, Yifeng Shi, Zhichen Jiang, Jiayi Zhao, et al. Itaconate attenuates osteoarthritis by inhibiting STING/NF-κB axis in chondrocytes and promoting M2 polarization in macrophages. Biochem Pharmacol., 2022, 198:114935.

16. Bahareh Sadri, Mohammad Hassanzadeh, Abolfazl Bagherifard, Javad Mohammadi, Mehdi Alikhani, Kasra Moeinabadi-Bidgoli, Hoda Madani, et al. Cartilage regeneration and inflammation modulation in knee osteoarthritis following injection of allogeneic adipose-derived mesenchymal stromal cells: a phase II, triple-blinded, placebo controlled, randomized trial. Stem Cell Res Ther., 2023, 14(1):162.

17. Manabu Kawata, Daniel B. McClatchy, Jolene K. Diedrich, Merissa Olmer, Kristen A. Johnson, John R. Yates, et al. Mocetinostat activates Krüppel-like factor 4 and protects against tissue destruction and inflammation in osteoarthritis. JCI Insight, 2023, 8(17): e170513.

18. Huangming Zhuang, Xunshan Ren, Fuze Jiang, Panghu Zhou.Indole-3-propionic acid alleviates chondrocytes inflammation and osteoarthritis via the AhR/NF-κB axis.Mol Med., 2023, 29(1):17.

19. Wenpeng Xie, Shangfeng Qi, Luming Dou, Lei Wang, Xiangpeng Wang, Rongxiu Bi, et al.Achyranthoside D attenuates chondrocyte loss and inflammation in osteoarthritis via targeted regulation of Wnt3a.Phytomedicine. 2023, 111:154663.

20. Sree Samanvitha Kuppa,Hyung-Keun Kim,Ju-Yeon Kang,Seok-Cheol Lee,Hong-Yeol Yang,Jaishree Sankaranarayanan,et al. Polynucleotides Suppress Inflammation and Stimulate Matrix Synthesis in an In Vitro Cell-Based Osteoarthritis Model. Int J Mol Sci., 2023, 24(15):12282.

21. Xiaofeng Deng,Yunkun Qu,Mengwei Li,Chunyu Wu,Jun Dai,Kang Wei,et al.Sakuranetin reduces inflammation and chondrocyte dysfunction in osteoarthritis by inhibiting the PI3K/AKT/NF-κB pathway.Biomed Pharmacother., 2024, 171:116194.

22. Bohan Chang, Zhehan Hu, Liang Chen, Zhuangzhuang Jin, Yue Yang. Development and validation of cuproptosis-related genes in synovitis during osteoarthritis progress. Front Immunol., 2023, 14:1090596.

23. Knights AJ, Redding SJ, Maerz T. Inflammation in osteoarthritis: the latest progress and ongoing challenges. Curr Opin Rheumatol., 2023, 35(2):128-134.

24. Bizhi Tu, Run Fang, Zheng Zhu, Guang Chen, Cheng Peng, Rende Ning. Comprehensive analysis of arachidonic acid metabolism-related genes in diagnosis and synovial immune in osteoarthritis: based on bulk and single-cell RNA sequencing data. Inflamm Res., 2023, 72(5):955-970.

25. Junchen Li, Genghong Wang, Xilin Xv, Zhigang Li, Yiwei Shen, Cheng Zhang, et al. Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning. Front Immunol., 2023, 14:1134412.

26. Aimy Sebastian, Nicholas R Hum, Jillian L McCool, Stephen P Wilson, Deepa K Murugesh, Kelly A Martin, et al. Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. Front Immunol., 2022, 13:938075.

27. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov., 2021, 20(9):689-709.

28. Zheng Z, Su J, Bao X, Wang H, Bian C, Zhao Q, et al. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front Immunol., 2023, 14:1247268.

29. Ying An, Bu-Tuo Xu, Sheng-Rong Wan, Xiu-Mei Ma, Yang Long, Yong Xu, et al. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol., 2023, 22(1):237.

30. Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, et al. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med., 2023, 21(1):519.

31. Cheng C, Zhang J, Li X, Xue F, Cao L, Meng L, et al. NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice. Signal Transduct Target Ther., 2023, 8(1):290.

32. Liang Liu, Wanying Zhang, Tanghao Liu, Yangfan Tan, Cheng Che, Jun Zhao, et al. The physiological metabolite α-ketoglutarate ameliorates osteoarthritis by regulating mitophagy and oxidative stress. Redox Biol., 2023, 62:102663.

33. Zizheng Chen, Yizhen Huang, Yu Chen, Xiaodong Yang, Jinjin Zhu, Guang Xu, et al. CircFNDC3B regulates osteoarthritis and oxidative stress by targeting miR-525-5p/HO-1 axis. Commun Biol., 2023, 6(1):200.

34. Bohao Chen, Qi He, Chuyi Chen, Yuewei Lin, Jiacong Xiao, Zhaofeng Pan, et al. Combination of curcumin and catalase protects against chondrocyte injury and knee osteoarthritis progression by suppressing oxidative stress. Biomed Pharmacother., 2023, 168:115751.

35. Hwang, H. S., & Kim, H. A. (2015). Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. International journal of molecular sciences, 16(11), 26035–26054. https://doi.org/10.3390/ijms161125943.

36. Kong X, Liu CJ. How do small quantities of cartilage sodium channels play a significant role in osteoarthritis?. Clin Transl Med. 2024;14(3):e1634..

37. Arora D, Taneja Y, Sharma A, Dhingra A, Guarve K. Role of Apoptosis in the Pathogenesis of Osteoarthritis: An Explicative Review. Curr Rheumatol Rev. 2024;20(1):2-13.

38. Hongjun Zhang, Wendi Zheng, Du Li, Jia Zheng. miR-146a-5p Promotes Chondrocyte Apoptosis and Inhibits Autophagy of Osteoarthritis by Targeting NUMB. Cartilage, 2021, 13(2_suppl):1467S-1477S.

39. Yuan Liu, Shi Xu, Haijun Zhang, Kaoliang Qian, Jiachen Huang, Xianger Gu, et al. Stimulation of α7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis. Cell Death Dis., 2021, 12(5):448.

40. J E Dilley, A Seetharam, X Ding, M A Bello, J Shutter, D B Burr, et al. CAMKK2 is upregulated in primary human osteoarthritis and its inhibition protects against chondrocyte apoptosis. Osteoarthritis Cartilage, 2023, 31(7):908-918.

41. Suziane Ungari Cayres-Santos, Jacqueline Bexiga Urban, Maurício Fregonesi Barbosa, Italo Ribeiro Lemes, Han C G Kemper, Romulo Araújo Fernandes. Sports participation improves metabolic profile in adolescents: ABCD growth study. Am J Hum Biol., 2020, 32(5):e23387.

42. Martínez-Aranda LM, Sanz-Matesanz M, Orozco-Durán G, González-Fernández FT, Rodríguez-García L, Guadalupe-Grau A. Effects of Different Rapid Weight Loss Strategies and Percentages on Performance-Related Parameters in Combat Sports: An Updated Systematic Review. Int J Environ Res Public Health., 2023, 20(6):5158.

43. Jiabao Liu, Shuangshuo Jia, Yue Yang, Longhuan Piao, Ziyuan Wang, Zhuangzhuang Jin, et al. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling. Biomedicine & Pharmacotherapy, 2023, 158, 114118.

44. Liang Chen, Yiting Lou, Zheqiang Pan, Xia Cao, Leyong Zhang, Chang Zhu, et al. Treadmill and wheel exercise protect against JNK/NF-κB induced inflammation in experimental models of knee osteoarthritis.

45. Kefeng Li, Anli Liu, Wenhao Zong, Lulu Dai, Yang Liu, Renping Luo, et al. Moderate exercise ameliorates osteoarthritis by reducing lipopolysaccharides from gut microbiota in mice. Saudi J Biol Sci., 2021, 28(1):40-49.

46. Xiaoxia Hao, Jiaming Zhang, Xingru Shang, Kai Sun, Jun Zhou, Jiawei Liu, et al. Exercise modifies the disease-relevant gut microbial shifts in post-traumatic osteoarthritis rats. Bone Joint Res., 2022, 11(4):214-225.

47. Sunmin Park, Suna Kang, Da Sol Kim, Ting Zhang. Protection against Osteoarthritis Symptoms by Aerobic Exercise with a High-Protein Diet by Reducing Inflammation in a Testosterone-Deficient Animal Model. Life (Basel), 2022, 12(2):177.

48. Leandro Almeida da Silva, Anand Thirupathi, Mateus Cardoso Colares, Daniela Pacheco Dos Santos Haupenthal, Ligia Milanez Venturini, Maria Eduarda Anastácio Borges Corrêa, et al. The effectiveness of treadmill and swimming exercise in an animal model of osteoarthritis. Front Physiol., 2023 Feb 21:14:1101159.

49. Yicheng Tian, Jian Gou, He Zhang, Jinghan Lu, Zhuangzhuang Jin, Shuangshuo Jia, et al. The anti-inflammatory effects of 15-HETE on osteoarthritis during treadmill exercise. Life Sci., 2021, 273:119260.

50. David Beckwée, Jo Nijs, Sita M A Bierma-Zeinstra, Lynn Leemans, Laurence Leysen, Sofie Puts, et al. Exercise therapy for knee osteoarthritis pain: how does it work? A study protocol for a randomised controlled trial. BMJ Open, 2024, 14(1): e074258.

51. Kosuke Norimatsu, Kazuki Nakanishi, Toshiro Ijuin, Shotaro Otsuka, Seiya Takada, Akira Tani, et al. Effects of low-intensity exercise on spontaneously developed knee osteoarthritis in male senescence-accelerated mouse prone 8. Arthritis Res Ther., 2023, 25(1):168.

52. Zihao Li, Ziyu Huang, He Zhang, Jinghan Lu, Yicheng Tian, Shang Piao, et al. Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis. Cell Death Discov., 2021, 7: 346.

53. Yuichiro Oka, Kenji Murata, Kaichi Ozone, Yuki Minegishi, Takuma Kano, Naoki Shimada, et al. Mild treadmill exercise inhibits cartilage degeneration via macrophages in an osteoarthritis mouse model. Osteoarthr Cartil Open, 2023, 5(2): 100359.

54. Kendal Marriott, Jaclyn Chopp-Hurley, Dessi Loukov, Sarah Karampatos, Alexander B Kuntz, Emily G Wiebenga, et al. Muscle strength gains after strengthening exercise explained by reductions in serum inflammation in women with knee osteoarthritis. Clin Biomech (Bristol, Avon)., 2021, 86:105381.

55. He Zhang, Lu Ji, Yue Yang, Yingliang Wei, Xiaoning Zhang, Yi Gang, et al. The Therapeutic Effects of Treadmill Exercise on Osteoarthritis in Rats by Inhibiting the HDAC3/NF-KappaB Pathway in vivo and in vitro. Front Physiol., 2019, 10:1060.

56. Xinghui Liu, Rong Chen, Zhenfei Song, Zhibo Sun. Exercise following joint distraction inhibits muscle wasting and delays the progression of post-traumatic osteoarthritis in rabbits by activating PGC-1α in skeletal muscle. J Orthop Surg Res., 2024, 19(1):325.

57. Xuchang Zhou, Hong Cao, Miao Wang, Jun Zou, Wei Wu. Moderate-intensity treadmill running relieves motion-induced post-traumatic osteoarthritis mice by up-regulating the expression of lncRNA H19. Biomed Eng Online, 2021, 20: 111.

58. N Jennifer Klinedinst, Weiliang Huang, Amy K Nelson, Barbara Resnick, Cynthia Renn, Maureen A Kane, et al. Inflammatory and Immune Protein Pathways Possible Mechanisms for Pain Following Walking in Knee Osteoarthritis. Nurs Res., 2022, 71(4):328-335.

59. Wei Liu, Congan Wang, Gongchang Yu, Bin Shi, Jingwen Wang. Analysis of the Application Effect of Exercise Rehabilitation Therapy Based on Data Mining in the Prevention and Treatment of Knee Osteoarthritis. Comput Math Methods Med., 2022, 2022: 2109528.

60. R Tossige-Gomes, N C P Avelar, A P Simão, C D C Neves, G E A Brito-Melo, C C Coimbra, et al. Whole-body vibration decreases the proliferativeb response of TCD4(+) cells in elderly individuals with knee osteoarthritis. Braz J Med Biol Res., 2012, 45(12):1262-1268.

61. Evangelia I Germanou, Athanasios Chatzinikolaou, Paraskevi Malliou, Anastasia Beneka, Athanasios Z Jamurtas, Christos Bikos, et al. Oxidative stress and inflammatory responses following an acute bout of isokinetic exercise in obese women with knee osteoarthritis. Knee, 2013, 20(6):581-90.

62. Bronisława Skrzep-Poloczek, Jakub Poloczek, Elżbieta Chełmecka, Wojciech Kazura, Agnieszka Dulska, Maciej Idzik, et al. General, 21-Day Postoperative Rehabilitation Program Has Beneficial Effect on Oxidative Stress Markers in Patients after Total Hip or Knee Replacement. Oxid Med Cell Longev., 2020, 2020: 4598437.

63. Alexander Baur, Jan Henkel, Wilhelm Bloch, Nicolai Treiber, Karin Scharffetter-Kochanek, Gert-Peter Brüggemann, et al. Effect of exercise on bone and articular cartilage in heterozygous manganese superoxide dismutase (SOD2) deficient mice. Free Radic Res., 2011, 45(5):550-558.

Published
2024-12-27
How to Cite
Tan, X., Lin, Z., & Yang, J. (2024). The research progress on sports applications in osteoarthritis. Molecular & Cellular Biomechanics, 21(4), 501. https://doi.org/10.62617/mcb501
Section
Article