High sensitivity detection of influenza virus using polymer-coated microcavity biosensor

  • Yuanyuan Wang School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
  • Shihao Cui Jianda Biotechnology (Nanjing) Co., Ltd, Nanjing 210031, China
  • Yuchao Gu College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Keywords: H1N1 influenza virus; polymer coated; micro cavity biosensor; sensitivity detection
Article ID: 642

Abstract

Influenza viruses are a major global public health concern because they cause seasonal epidemics and sporadic pandemics. The sensitivity and specificity of viral detection can be improved through recent developments in biosensor technology. The capacity of microcavity biosensors to detect biomolecules, including viruses, in real-time without requiring labels caused interest among them. In this study, we present a novel polymer-coated microcavity biosensor for the high-sensitivity detection of the H1N1 influenza virus. The main microcavity structure of this label-free biosensor is intended to improve sensitivity by optimizing performance characteristics specific to viral samples. The simulation indicates the microcavity resonator’s outstanding sensitivity in H1N1. Our biosensor efficiently detects H1N1 at lower concentrations than conventional diagnostic techniques by utilizing a polymer coating that improves binding affinity and encourages the immobilization of certain antibodies. Using the polymer layer enhances the sensor’s functionality and confers biocompatibility, opening up possible uses in point-of-care environments. The polymer-coated microcavity biosensor, according to our research, is a potential platform for early, sensitive, and quick influenza virus detection, greatly assisting with public health response and monitoring activities.

References

1. Borchering, R.K., Gunning, C.E., Gokhale, D.V., Weedop, K.B., Saeidpour, A., Brett, T.S. and Rohani, P., 2021. Anomalous influenza seasonality in the United States and the emergence of novel influenza B viruses. Proceedings of the National Academy of Sciences, 118(5), p.e2012327118.

2. Mirska, B., Woźniak, T., Lorent, D., Ruszkowska, A., Peterson, J.M., Moss, W.N., Mathews, D.H., Kierzek, R. and Kierzek, E., 2023. In vivo secondary structural analysis of Influenza A virus genomic RNA. Cellular and Molecular Life Sciences, 80(5), p.136.

3. Paonessa, M., Salvo, M.D., Tilocca, B. and Roncada, P., 2024. Mitigating neglected zoonotic infections: A One Health approach on avian influenza in humans and animals. Gene Protein Dis, 3(1), p.2327.

4. Blagodatski, A., Trutneva, K., Glazova, O., Mityaeva, O., Shevkova, L., Kegeles, E., Onyanov, N., Fede, K., Maznina, A., Khavina, E. and Yeo, S.J., 2021. Avian influenza in wild birds and poultry: dissemination pathways, monitoring methods, and virus ecology. Pathogens, 10(5), p.630.

5. Macias, A.E., McElhaney, J.E., Chaves, S.S., Nealon, J., Nunes, M.C., Samson, S.I., Seet, B.T., Weinke, T. and Yu, H., 2021. The disease burden of influenza is beyond respiratory illness. Vaccine, 39, pp.A6-A14.

6. Husain, M., 2020. Host factors involved in influenza virus infection. Emerging Topics in Life Sciences, 4(4), pp.401-410.

7. Diwakar, R.P., Kumar, P., Yadav, V. and Verma, H.C., 2021. Swine Flu and Its Impact on Public Health. Call for Editorial Board Members, 9(1), p.25.

8. Kaaijk, P., Swaans, N., Nicolaie, A.M., Bruin, J.P., van Boxtel, R.A., de Lange, M.M., Meijer, A., Sanders, E.A., van Houten, M.A., Rots, N.Y. and Luytjes, W., 2022. Contribution of influenza viruses, other respiratory viruses, and viral co-infections to influenza-like illness in older adults. Viruses, 14(4), p.797.

9. Courtney, S.J., Stromberg, Z.R. and Kubicek-Sutherland, J.Z., 2021. Nucleic acid-based sensing techniques for diagnostics and surveillance of influenza. Biosensors, 11(2), p.47.

10. Nava, G., Zanchetta, G., Giavazzi, F. and Buscaglia, M., 2022. Label-free optical biosensors in the pandemic era. Nanophotonics, 11(18), pp.4159-4181.

11. Wang, W., Kang, S., Zhou, W. and Vikesland, P.J., 2023. Environmental routes of virus transmission and the application of nanomaterial-based sensors for virus detection. Environmental Science: Nano, 10(2), pp.393-423.

12. Oeschger, T.M., McCloskey, D.S., Buchmann, R.M., Choubal, A.M., Boza, J.M., Mehta, S. and Erickson, D., 2021. Early warning diagnostics for emerging infectious diseases in developing into late-stage pandemics. Accounts of Chemical Research, 54(19), pp.3656-3666.

13. Kabay, G., DeCastro, J., Altay, A., Smith, K., Lu, H.W., Capossela, A.M., Moarefian, M., Aran, K. and Dincer, C., 2022. Emerging biosensing technologies for the diagnostics of viral infectious diseases. Advanced Materials, 34(30), p.2201085.

14. Castillo-Henríquez, L., Brenes-Acuña, M., Castro-Rojas, A., Cordero-Salmerón, R., Lopretti-Correa, M. and Vega-Baudrit, J.R., 2020. Biosensors for the detection of bacterial and viral clinical pathogens. Sensors, 20(23), p.6926.

15. Besbes, H., Ouerghui, F., Omri, M., Haxha, S. and AbdelMalek, F., 2023. Label-free microring biosensor with enhanced sensitivity for detection of influenza A viruses H1N1 and H9N2. Alexandria Engineering Journal, 77, pp.255-264.

16. Bannur Nanjunda, S., Seshadri, V.N., Krishnan, C., Rath, S., Arunagiri, S., Bao, Q., Helmerson, K., Zhang, H., Jain, R., Sundarrajan, A. and Srinivasan, B., 2022. Emerging nanophotonic biosensor technologies for virus detection. Nanophotonics, 11(22), pp.5041-5059.

17. Tsalsabila, A., Dabur, V.A., Budiarso, I.J., Wustoni, S., Chen, H.C., Birowosuto, M.D., Wibowo, A. and Zeng, S., 2024. Progress and Outlooks in Designing Photonic Biosensor for Virus Detection. Advanced Optical Materials, 12(24), p.2400849.

18. Seymour, E., Ekiz Kanik, F., Diken Gür, S., Bakhshpour-Yucel, M., Araz, A., Lortlar Ünlü, N. and Ünlü, M.S., 2023. Solid-phase optical sensing techniques for sensitive virus detection. Sensors, 23(11), p.5018.

19. Blevins, M.G., Fernandez-Galiana, A., Hooper, M.J. and Boriskina, S.V., 2021, August. Roadmap on universal photonic biosensors for real-time detection of emerging pathogens. In Photonics (Vol. 8, No. 8, p. 342). Multidisciplinary Digital Publishing Institute.

20. Nath, P., Kabir, A., Khoubafarin Doust, S., Kreais, Z.J. and Ray, A., 2020. Detection of bacterial and viral pathogens using photonic point-of-care devices. Diagnostics, 10(10), p.841.

21. Harito, C., Khalil, M., Septiani, N.L.W., Dewi, K.K., Hardiansyah, A., Yuliarto, B. and Walsh, F.C., 2022. Trends in nanomaterial-based biosensors for viral detection. Nano Futures, 6(2), p.022005.

22. Salama, A.M., Yasin, G., Zourob, M. and Lu, J., 2022. Fluorescent biosensors for the detection of viruses using graphene and two-dimensional carbon nanomaterials. Biosensors, 12(7), p.460.

23. Jiang, H. and Zhang, Z., 2023. Immune response in influenza virus infection and modulation of immune injury by viral neuraminidase. Virology Journal, 20(1), p.193.

24. Wang, Z., Zhou, B. and Zhang, A.P., 2024. High-Q WGM microcavity-based optofluidic sensor technologies for biological analysis. Biomicrofluidics, 18(4).

25. Hao, Y. and Guo, Z., 2021. Integrated sensor with a whispering gallery mode and surface plasmonic resonance for the enhanced detection of viruses. JOSA B, 38(10), pp.2855-2862.

26. Ma, X., Shi, Y., Gao, G., Zhang, H., Zhao, Q. and Zhi, J., 2023. Application and progress of electrochemical biosensors for the detection of pathogenic viruses. Journal of Electroanalytical Chemistry, p.117867.

27. Farsaeivahid, N., Grenier, C., Nazarian, S. and Wang, M.L., 2022. A rapid label-free disposable electrochemical salivary point-of-care sensor for SARS-CoV-2 detection and quantification. Sensors, 23(1), p.433.

28. Kim, J.H., Jeong, H.S., Hwang, J., Kweon, D.H., Choi, C.H. and Park, J.P., 2023. Affinity Peptide-Tethered Suspension Hydrogel Sensor for Selective and Sensitive Detection of Influenza Virus. ACS Applied Materials & Interfaces, 15(44), pp.52051-52064.

29. Yang, Y., Bu, S., Zhang, X., Duan, Q., Meng, H., Hao, Z., He, X. and Wan, J., 2024. Influenza virus detection using an electrochemical biosensor based on DSN and RCA. Microchemical Journal, 199, p.109998.

30. Nair, M.P., Teo, A.J. and Li, K.H.H., 2021. Acoustic biosensors and microfluidic devices in the decennium: Principles and applications. Micromachines, 13(1), p.24.

31. Liu, H., Hu, D.J.J., Sun, Q., Wei, L., Li, K., Liao, C., Li, B., Zhao, C., Dong, X., Tang, Y. and Xiao, Y., 2023. Specialty optical fibers for advanced sensing applications. Opto-Electronic Science, 2(2), pp.220025-1.

Published
2024-12-10
How to Cite
Wang, Y., Cui, S., & Gu, Y. (2024). High sensitivity detection of influenza virus using polymer-coated microcavity biosensor. Molecular & Cellular Biomechanics, 21(4), 642. https://doi.org/10.62617/mcb642
Section
Article