Studies on the mechanical properties of microalgae and their effects on growth, breeding and extraction quality
Abstract
Microalgae is becoming a crucial research topic because of global resource shortage, pollution, and population growth make. This paper focuses on the mechanical properties of microalgae cells, including the characterization of cell stiffness, adhesion force, and deformability and their applications in growth regulation and breeding. Understanding cell behavior provides significance and serves as a basis for screening and cultivating microalgae. It analyzes the effects of mechanical factors, including light, temperature, and fluid shear stress on microalgae growth and emphasizes the importance of optimizing these conditions. It discussed high-throughput screening techniques in microalgae breeding and the correlation between mechanical properties and superior traits. With regard to microalgae processing, the paper examines the role of cellular biomechanics in harvesting, extraction, and product quality optimization, including the selection and optimization of harvesting methods, the evaluation of cell fragmentation efficiency, and the relationship between product quality and mechanical properties. The paper presents case studies on specific microalgae species like Chlamydomonas reinhardtii and highlights its potential to optimize culture conditions, promote product diversification, drive technological innovation, support environmental protection, and enhance interdisciplinary cooperation.
References
1. Wasu Pathom-aree, Pachara Sattayawat, Sahutchai Inwongwan, Benjamas Cheirsilp, Naruepon Liewtrakula, Wageeporn Maneechote, Pharada Rangseekaew, Fiaz Ahmad, Muhammad Aamer Mehmood, Fengzheng Gao, Sirasit Srinuanpan. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiological Research. 2024 Sep;286:127813. doi: 10.1016/j.micres.2024.127813.
2. Hong Y, Yang L, You X, Zhang H, Xin X, Zhang Y, Zhou X. Effects of light quality on microalgae cultivation: bibliometric analysis, mini-review, and regulation approaches. Environmental Science and Pollution Research. 2023 Nov 28. doi: 10.1007/s11356-023-31192-2.
3. Singh V, Mishra V. A review on the current application of light-emitting diodes for microalgae cultivation and its fiscal analysis. Critical reviews in biotechnology. 2023 Dec;43(5):665-679. doi: 10.1080/07388551.2022.2057274.
4. Bin-Di Mao, Ashiwin Vadiveloo, Kai-Yuan Li, Jian Qiu, Feng Gao. Bioconversion of C1 and C2 artificial photosynthesis products into high-value bioproducts by mixotrophic microalgae Chlorella pyrenoidosa. Chemical Engineering Journal. Volume 499, 2024, 55979. doi.org/10.1016/j.cej.2024.155979.
5. Pereira ASAP, Silva TAD, Magalhães IB, Ferreira J, Braga MQ, Lorentz JF, Assemany PP, Couto EAD, Calijuri ML. Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvesting technologies. The Science of the total environment. 2024 Apr 10;920:170918. doi: 10.1016/j.scitotenv.2024.170918.
6. Alavianghavanini A, Shayesteh H, Bahri PA, Vadiveloo A, Moheimani NR. Microalgae cultivation for treating agricultural effluent and producing value-added products. The Science of the total environment. 2024 Feb 20;912:169369. doi: 10.1016/j.scitotenv.2023.169369.
7. Malla MA, Ansari FA, Bux F, Kumari S. Re-vitalizing wastewater: Nutrient recovery and carbon capture through microbe-algae synergy using omics-biology. Environmental Research. Volume 259, 15 October 2024, 119439. doi: 10.1016/j.envres.2024.119439.
8. Muhammad Shafiq, Liaqat Zeb, Muhammad Jawad, and Zhanyou Chi. Treatment of Saline Organic-Rich Fermentation Wastewater by Marine Chlorella sp. for Value-Added Biomass Production. Industrial & Engineering Chemistry Research. 2021 60 (37), 13463-13473. doi: 10.1021/acs.iecr.1c01874.
9. Letícia Rodrigues de Assis, Jéssica Ferreira, Paula Peixoto Assemany, Jamily Santos Teixeira, Jackeline de Siqueira Castro, Heverton Augusto Pereira, Maria Lúcia Calijuri. Environmental benefits of a hybrid system for algal biomass production, harvesting and nutrient recovery under a life-cycle assessment. Algal Research, Volume 73, 2023,103163. doi.org/10.1016/j.algal.2023.103163.
10. Rozenberg JM, Sorokin BA, Mukhambetova AN, Emelianova AA, Kuzmin VV, Belogurova-Ovchinnikova OY, Kuzmin DV. Recent advances and fundamentals of microalgae cultivation technology. Biotechnology journal. 2024 Mar;19(3):e2300725. doi: 10.1002/biot.202300725.
11. Kong W, Kong J, Feng S, Yang T, Xu L, Shen B, Bi Y, Lyu H. Cultivation of microalgae-bacteria consortium by waste gas-waste water to achieve CO2 fixation, wastewater purification and bioproducts production. Biotechnology for biofuels and bioproducts. 2024 Feb 15;17(1):26. doi: 10.1186/s13068-023-02409-w.
12. Peilun Xu, Shengxi Shao, Jun Qian, Jingjing Li, Rui Xu, Jin Liu, Wenguang Zhou. Scale-up of microalgal systems for decarbonization and bioproducts: Challenges and opportunities. Bioresource Technology. Volume 398, 2024, 30528. doi.org/10.1016/j.biortech.2024.130528.
13. Tehreem Syed, Felix Krujatz, Yob Ihadjadene, Gunnar Mühlstädt, Homa Hamedi, Jonathan Mädler, Leon Urbas. A review on machine learning approaches for microalgae cultivation systems. Computers in biology and medicine. 2024 April Volume 172:108248. doi: 10.1016/j.compbiomed.2024.108248.
14. Coleman B, Vereecke E, Van Laere K, Novoveska L, Robbens J. Genetic Engineering and Innovative Cultivation Strategies for Enhancing the Lutein Production in Microalgae. Marine drugs. 2024 Jul 23;22(8):329. doi: 10.3390/md22080329.
15. Sumathi Y, Dong CD, Singhania RR, Chen CW, Gurunathan B, Patel AK. Advancements in Nano-Enhanced microalgae bioprocessing. Bioresource technology. 2024 Jun;401:130749. doi: 10.1016/j.biortech.2024.130749.
16. Yuan X, Gao X, Liu C, Liang W, Xue H, Li Z, Jin H. Application of Nanomaterials in the Production of Biomolecules in Microalgae: A Review. Marine drugs. 2023 Nov 16;21(11):594. doi: 10.3390/md21110594.
17. Díaz S, Romero F, Suárez L, Ríos R, Alemán M, Venuleo M, Ortega Z. Characterization of Microalgae Biomass-Based Composites Obtained through Rotational Molding. Polymers. 2024; 16(13):1807. doi.org/10.3390/polym16131807.
18. Fabrizio Di Caprio, Nooshin Pedram, Benedetta Brugnoli, Iolanda Francolini, Pietro Altimari, Francesca Pagnanelli. Exploring different processes for starch extraction from microalgae and synthesis of starch-chitosan plastic films. Bioresource Technology. 2024 Volume 413: 131516. doi.org/10.1016/j.biortech.2024.131516.
19. Denghui Ren, Hao Jiang, Shencheng Fan, Liu Song, Yating Luo, Fang Lai, Ruinan Pei, Qingzhao Yang, Jing Li. Polydopamine-modified black phosphorus/microcapsule composite material used to enhance the solar thermal conversion and self-healing performance of SBS modified asphalt. Journal of Applied Polymer Science: Volume 142, Issue 1: e56316. doi.org/10.1002/app.56316.
20. Dimitriades-Lemaire, A. Compadre, C. Dubreuil, P. Alvarez, J.-F. Sassi, Y. Li-Beisson, J.-L. Putaux, N. Le Moigne, G. Fleury. From raw microalgae to bioplastics: Conversion of Chlorella vulgaris starch granules into thermoplastic starch. Carbohydrate Polymers. 2024, Volume 342: 122342. doi.org/10.1016/j.carbpol.2024.122342.
21. Israel Kellersztein, Daniel Tish, John Pederson, Martin Bechthold, Chiara Daraio. Multifunctional Biocomposite Materials from Chlorella vulgaris Microalgae. Advanced Materials. 2024 Nov 19: 2413618. doi.org/10.1002/adma.202413618
22. Agbo P, Mali A, Kelkar AD, Wang L, Zhang L. Injecting Sustainability into Epoxy-Based Composite Materials by Using Bio-Binder from Hydrothermal Liquefaction Processing of Microalgae. Molecules. 2024; 29(15):3656. doi.org/10.3390/molecules29153656.
23. Doljit Borah, Khalifa S.H. Eldiehy, Rupam Kataki, Dhanapati Deka. Chapter 4 - Circular bio-based economy of microalgae-based processes and products. Editor(s): Yves Gagnon, Eduardo Jacob-Lopes, Leila Queiroz Zepka, Mariany Costa Deprá. In Woodhead Series in Bioenergy. Algal Bioreactors. Elsevier Science Ltd, 2025: 39-67.doi.org/10.1016/B978-0-443-14058-7.00045-2.
24. Wiktoria K. Szapoczka*Viljar H. LarsenHanna BöppleDorinde M. M. KleinegrisZhaolu DiaoTore SkodvinJoachim P. SpatzBodil HolstPeter J. Thomas*. Transparent, Antibiofouling Window Obtained with Surface Nanostructuring. ACS Omega 2024, 9, 38, 39464–39471. doi.org/10.1021/acsomega.4c03030.
25. Anh Tuan Hoang, Ranjna Sirohi, Ashok Pandey, Sandro Nižetić, Su Shiung Lam, Wei-Hsin Chen, Rafael Luque, Sabu Thomas, Müslüm Arıcı & Van Viet Pham. Biofuel production from microalgae: challenges and chances. Phytochemistry Reviews. Volume 22 2023: 1089–1126. doi.org/10.1007/s11101-022-09819-y.
26. Sk. Yasir Arafat Siddiki, M. Mofijur, P. Senthil Kumar, Shams Forruque Ahmed, Abrar Inayat, F. Kusumo, Irfan Anjum Badruddin, T.M. Yunus Khan, L.D. Nghiem, Hwai Chyuan Ong, T.M.I. Mahlia. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel. Volume 307, 2022, 121782. doi.org/10.1016/j.fuel.2021.121782.
27. Anton L. Esipovich, Evgeny A. Kanakov, Tatyana A. Charykova, Ksenia V. Otopkova, Yulia A. Mityukova, Artem S. Belousov. Processing of lipid-enriched microalgae Chlorella biomass into biofuels and value-added chemicals. Fuel. Volume 381, Part B, 2025, 133484. doi.org/10.1016/j.fuel.2024.133484.
28. Xiang Wang, Zhen-Yao Wang, Hong-Ye Li. Chapter 16 - Microalgae for biofuels: A prospective feedstock. Editor(s): Rafael Luque, Carol Sze Ki Lin, Karen Wilson, Chenyu Du. In Woodhead Publishing Series in Energy. Handbook of Biofuels Production (Third Edition). Woodhead Publishing, 2023: Pages 543-580. doi.org/10.1016/B978-0-323-91193-1.00015-9.
29. Halina Falfushynska. Advancements and Prospects in Algal Biofuel Production: A Comprehensive Review. Phycology. 2024, 4(4): 548-575. doi.org/10.3390/phycology4040030.
30. Hélène Launay, Luisana Avilan, Cassy Gérard, Goetz Parsiegla, Véronique Receveur-Brechot, Brigitte Gontero, Frédéric Carriere. Location of the photosynthetic carbon metabolism in microcompartments and separated phases in microalgal cells. FEBS letters. 2023 Volume597, Issue23: 2853-2878. doi.org/10.1002/1873-3468.14754
31. Perez-Garcia, O., Bashan, Y. Microalgal Heterotrophic and Mixotrophic Culturing for Bio-refining: From Metabolic Routes to Techno-economics. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. 2015, 61-131.
32. Ying Liu, Xin Liu, Yan Cui, Wenqiao Yuan. Ultrasound for microalgal cell disruption and product extraction: A review. Ultrasonics Sonochemistry, Volume 87, 2022, 106054.
33. Longren Liao, Yuhan Shen, Chenglin Xie, Yongkui Zhang, Changhong Yao. Ultrasonication followed by aqueous two-phase system for extraction, on-site modification and isolation of microalgal starch with reduced digestibility. Ultrasonics Sonochemistry. Volume 106, 2024,106891. doi.org/10.1016/j.ultsonch.2024.106891.
34. Tongteng Ruijie (Shanghai) Biotechnology Co., LTD. The WOLF G2 single-cell flexible sorting system was used to enrich transgenic microalgae. 2024-08-26. http://tt-wisdom.com/News/info_itemid_228_lcid_2.html
Copyright (c) 2024 Yanran Liu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.