Effects of photobiomodulation therapy on acute recovery after exhausting cycling exercise

  • Yanying Liu School of Physical Education and Health, Zhaoqing University, Zhaoqing 526000, China
  • Yao Tong School of Physical Education and Health, Zhaoqing University, Zhaoqing 526000, China
Keywords: skeletal muscle fatigue; acute recovery; performance; photobiomodulation; blood lactate; heart rate
Article ID: 823

Abstract

The application of photobiomodulation therapy (PBMT) to delay skeletal muscle fatigue and shield against muscle damage represents a novel frontier in the field of exercise physiology. Further research is warranted to understand the physiological impact of PBMT on post-exercise recovery and muscle functionality. The objective of this research is to assess the impact of PBMT on the quadriceps following strenuous cycling, focusing on blood lactate (BL) levels, heart rate (HR), perceived exertion (RPE), and performance in the Wingate (WG) test. The study involved 12 male participants who were randomly allocated to either an active PBMT group or a control group, with treatments administered to the rectus femoris muscles bilaterally post-exhaustive cycling. The cycling exercise workload was 50 Watts (W); it increased by 50 W every 30 s at 60 rpm until the onset of exhaustion; and 30 s of active recovery was allowed between intervals. The BL, HR, and RPE were measured at several time points: pre-exercise, post-exercise, and at 10 min and 20 min post-exercise, as well as post-WG test. BL was significantly reduced in the PBMT group compared to the placebo group at the 10-min (p < 0.05) and 20-min (p < 0.01) marks post-exercise, and also post-WG test (p < 0.01). Additionally, HR was significantly lower in the PBMT group immediately following the WG test (p < 0.01). Both the mean (p < 0.05) and peak power outputs (p < 0.05) were found to be superior in the PBMT group. The application of PBMT to the quadriceps post-exhaustive exercise resulted in reduced BL and HR, along with improved WG test results, suggesting that PBMT may facilitate faster recovery following physical exertion.

References

1. Armstrong, L. E., Bergeron, M. F., Lee, E. C., Mershon, J. E., & Armstrong, E. M. (2022). Overtraining syndrome as a complex systems phenomenon. Frontiers in Network Physiology, 1: 794392. https://doi.org/10.3389/fnetp.2021.794392

2. Carrard, J., Rigort, A. C., Appenzeller-Herzog, C., Colledge, F., Königstein, K., Hinrichs, T., & Schmidt-Trucksäss, A. (2022). Diagnosing overtraining syndrome: a scoping review. Sports Health, 14(5): 665-673. doi:10.1177/19417381211044739

3. Kwiecien, S. Y., & McHugh, M. P. (2021). The cold truth: the role of cryotherapy in the treatment of injury and recovery from exercise. European Journal of Applied Physiology, 121(8): 2125-2142.

4. Van Pelt, D. W., Lawrence, M. M., Miller, B. F., Butterfield, T. A., & Dupont-Versteegden, E. E. (2021). Massage as a mechanotherapy for skeletal muscle. Exercise and Sport Sciences Reviews, 49(2): 107-114.

5. Afonso, J., Clemente, F. M., Nakamura, F. Y., Morouço, P., Sarmento, H., Inman, R. A., & Ramirez-Campillo, R. (2021). The effectiveness of post-exercise stretching in short-term and delayed recovery of strength, range of motion and delayed onset muscle soreness: a systematic review and meta-analysis of randomized controlled trials. Frontiers in Physiology, 12: 677581.

6. Fisher, S. R., Rigby, J. H., Mettler, J. A., & McCurdy, K. W. (2019). The effectiveness of photobiomodulation therapy versus cryotherapy for skeletal muscle recovery: a critically appraised topic. Journal of Sport Rehabilitation, 28(5): 526-531.

7. González-Muñoz, A., Perez-Montilla, J. J., Cuevas-Cervera, M., Aguilar-García, M., Aguilar-Nuñez, D., Hamed-Hamed, D., Pruimboom, L., & Navarro-Ledesma, S. (2023). Effects of Photobiomodulation in sports performance: a literature review. Applied Sciences, 13(5): 3147. https://doi.org/10.3390/app13053147

8. Rageh, M. R. M., Yamany, A. A., Hamada, H. A., & Mohamed, R. R. (2021). Effect of different time intervals of light emitting diode therapy application on muscle fatigue. SPORT TK-Revista EuroAmericana de Ciencias del Deporte, 10(2): 214-233. https://doi.org/10.6018/sportk.489141

9. Borsa, P. A., Larkin, K. A., & True, J. M. (2013). Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. Journal of Athletic Training, 48(1): 57-67.

10. Karu, T. (2010). Mitochondrial mechanisms of photobiomodulation in context of new data about multiple roles of ATP. Photomedicine and Laser Surgery, 28(2): 159-160.

11. Kim, H., Lee, H. Y., Abueva, C., Park, S. Y., Padalhin, A., Ryu, H. S., Chung, P. S., & Woo, S. H. (2023). Effect of 850 nm photobiomodulation on the adenosine diphosphate/adenosine triphosphate measure of apoptosis in geniculate ganglion neuronal cells in vitro. Medical Lasers; Engineering, Basic Research, and Clinical Application, 12(3): 183-190. https://doi.org/10.25289/ML.23.023

12. Dos Reis, F. A., da Silva, B. A. K., Laraia, E. M. S., de Melo, R. M., Silva, P. H., Leal-Junior, E. C. P., & de Carvalho, P. D. T. C. (2014). Effects of pre-or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial. Photomedicine and Laser Surgery, 32(2): 106-112.

13. Fitts, R. H. (2008). The cross-bridge cycle and skeletal muscle fatigue. Journal of Applied Physiology, 104(2): 551-558.

14. Meyler, S., Bottoms, L., Wellsted, D., & Muniz-Pumares, D. (2023). Variability in exercise tolerance and physiological responses to exercise prescribed relative to physiological thresholds and to maximum oxygen uptake. Experimental Physiology, 108(4): 581-594. https://doi.org/10.1113/EP090878

15. Paolillo, F. R., Corazza, A. V., Borghi-Silva, A., Parizotto, N. A., Kurachi, C., & Bagnato, V. S. (2013). Infrared LED irradiation applied during high-intensity treadmill training improves maximal exercise tolerance in postmenopausal women: a 6-month longitudinal study. Lasers in Medical Science, 28: 415-422.

16. Tullberg, M., Alstergren, P. J., & Ernberg, M. M. (2003). Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain, 105(1-2): 89-96.

17. Kelencz, C. A., Munoz, I. S., Amorim, C. F., & Nicolau, R. A. (2010). Effect of low-power gallium–aluminum–arsenium noncoherent light (640 nm) on muscle activity: a clinical study. Photomedicine and Laser Surgery, 28(5): 647-652.

18. Fritsch, C. G., Dornelles, M. P., Severo-Silveira, L., Marques, V. B., Rosso, I. D. A., & Baroni, B. M. (2016). Effects of low-level laser therapy applied before or after plyometric exercise on muscle damage markers: randomized, double-blind, placebo-controlled trial. Lasers in Medical Science, 31: 1935-1942.

19. De Marchi, T., Ferlito, J. V., Ferlito, M. V., Salvador, M., & Leal-Junior, E. C. P. (2022). Can photobiomodulation therapy (PBMT) minimize exercise-induced oxidative stress? A systematic review and meta-analysis. Antioxidants, 11(9): 1671. https://doi.org/10.3390/antiox11091671

20. Servetto, N., Cremonezzi, D., Simes, J. C., Moya, M., Soriano, F., Palma, J. A., & Campana, V. R. (2010). Evaluation of inflammatory biomarkers associated with oxidative stress and histological assessment of low‐level laser therapy in experimental myopathy. Lasers in surgery and medicine, 42(6): 577-583.

21. Al Haddad, H., Laursen, P. B., Chollet, D., Lemaitre, F., Ahmaidi, S., & Buchheit, M. (2010). Effect of cold or thermoneutral water immersion on post-exercise heart rate recovery and heart rate variability indices. Autonomic Neuroscience, 156(1-2): 111-116.

22. Borg, G., Domserius, M., & Kaijser, L. (1990). Effect of alcohol on perceived exertion in relation to heart rate and blood lactate. European Journal of Applied Physiology and Occupational Physiology, 60: 382-384.

23. Cohen, J. (1988). Statistical Power for the Social Sciences. Laurence Erlbaum and Associates, Hillsdale, N. J., USA.

24. da Cunha Moraes, G., Vitoretti, L. B., de Brito, A. A., Alves, C. E., de Oliveira, N. C. R., dos Santos Dias, A., Matos, Y. S. T., Oliveira-Junior, M. C., Oliveira, L. V. F., da Palma, R. K., Candeo, L. C., Lino-dos-Santos-Franco, A., Horliana, A. C. R. T., Júnior, J. A. G., Aimbire, F., Vieira, R. P., & Ligeiro-de-Oliveira, A. P. (2018). Low‐level laser therapy reduces lung inflammation in an experimental model of chronic obstructive pulmonary disease involving P2X7 receptor. Oxidative medicine and cellular longevity, 2018(1): 6798238.

25. Skobelkin, O. K., Michailov, V. A., & Zakharov, S.D. (1991). Preoperative activation of the immune system by low reactive level laser therapy (LLLT) in oncologic patients: a preliminary report. Laser Therapy, 3(4): 169-175.

26. Luo, L., Sun, Z., Zhang, L., Li, X., Dong, Y., & Liu, T. C. Y. (2013). Effects of low-level laser therapy on ROS homeostasis and expression of IGF-1 and TGF-β1 in skeletal muscle during the repair process. Lasers in medical Science, 28: 725-734.

27. Oliveira Jr, M. C., Greiffo, F. R., Rigonato-Oliveira, N. C., Custódio, R. W. A., Silva, V. R., Damaceno-Rodrigues, N. R., Almeida, F. M., Albertini, R., Lopes-Martins, R. Á. B., de Oliveira, L. V. F., de Tarso Camillo de Carvalho, P., de Oliveira, A. P. L., Leal Jr, E. C. P., & Vieira, R. P. (2014). Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS. Journal of Photochemistry and Photobiology B: Biology, 134: 57-63.

28. de Paiva, P. R. V., Tomazoni, S. S., Johnson, D. S., Vanin, A. A., Albuquerque-Pontes, G. M., Machado, C. D. S. M., Casalechi, H. L., de Carvalho, P. D. T. C., & Leal-Junior, E. C. P. (2016). Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers in Medical Science, 31(9): 1925-1933.

29. Leal Junior, E. C., de Godoi, V., Mancalossi, J. L., Rossi, R. P., De Marchi, T., Parente, M., Grosselli, D., Generosi, R. A., Basso, M., Frigo, L., Tomazoni, S. S., Bjordal, J. M., & Lopes-Martins, R. Á. B. (2011). Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results. Lasers in Medical Science, 26: 493-501.

30. Hayworth, C. R., Rojas, J. C., Padilla, E., Holmes, G. M., Sheridan, E. C., & Gonzalez-Lima, F. (2010). In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochemistry and Photobiology, 86(3): 673-680.

31. Antonialli, F. C., De Marchi, T., Tomazoni, S. S., Vanin, A. A., dos Santos Grandinetti, V., de Paiva, P. R. V., Pinto, H. D., Miranda, E. F., de Carvalho, P. D. T. C., & Leal-Junior, E. C. P. (2014). Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers in Medical Science, 29: 1967-1976.

32. Follmer, B., Dellagrana, R. A., Rossato, M., Sakugawa, R. L., & Diefenthaeler, F. (2018). Photobiomodulation therapy is beneficial in reducing muscle fatigue in Brazilian jiu-jitsu athletes and physically active men. Sport Sciences for Health, 14: 685-691.

33. Li, B. M., Qiu, D. Y., Ni, P. S., Wang, Z. Z., Duan, R., Yang, L., Liu, C. Y., Chen, B.Y., & Li, F. H. (2024). Can pre-exercise photobiomodulation improve muscle endurance and promote recovery from muscle strength and injuries in people with different activity levels? A meta-analysis of randomized controlled trials. Lasers in Medical Science, 39(1): 1-20.

34. Ferraresi, C., de Sousa, M. V. P., Huang, Y. Y., Bagnato, V. S., Parizotto, N. A., & Hamblin, M. R. (2015). Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers in Medical Science, 30: 1259-1267.

35. Cairns, S. P. (2006). Lactic acid and exercise performance: culprit or friend?. Sports medicine, 36: 279-291.

36. Bartoloni, B., Mannelli, M., Gamberi, T., & Fiaschi, T. (2024). The Multiple Roles of Lactate in the Skeletal Muscle. Cells, 13(14): 1177. doi: 10.3390/cells13141177.

37. Paolillo, F. R., Corazza, A. V., Paolillo, A. R., Borghi-Silva, A., Arena, R., Kurachi, C., & Bagnato, V. S. (2014). Phototherapy during treadmill training improves quadriceps performance in postmenopausal women. Climacteric, 17(3): 285-293.

38. Dutra, Y. M., Claus, G. M., Malta, E. D. S., Seda, D. M. D. F., Zago, A. S., Campos, E. Z., Ferraresi, C., & Zagatto, A. M. (2021). Photobiomodulation 30 min or 6 h prior to cycling does not alter resting blood flow velocity, exercise-induced physiological responses or time to exhaustion in healthy men. Frontiers in Physiology, 11: 607302. https://doi.org/10.3389/fphys.2020.607302

39. de Brito Vieira, W. H., Bezerra, R. M., Queiroz, R. A. S., Maciel, N. F. B., Parizotto, N. A., & Ferraresi, C. (2014). Use of low-level laser therapy (808 nm) to muscle fatigue resistance: a randomized double-blind crossover trial. Photomedicine and Laser Surgery, 32(12): 678-685.

40. Nagao, M., Yamaguchi, S., & Okuda, Y. (2001). Effects of low reactive level laser, linear polarized light and Xenon-ray irradiation on the stellate ganglion in dogs. Masui. The Japanese Journal of Anesthesiology, 50(9): 958-963.

41. do Nascimento, A. P., de Oliveira, G. A., Bressanin, J. P. B., Aguirra, P., Ribeiro, A. S., Caldeira, L. F. S., Casonatto, J., Ferraresi, C., & Aguiar, A. F. (2024). Acute dose-response effect of photobiomodulation therapy on 5-km running performance in trained runners: a randomized, double-blind, placebo-controlled, crossover study. Lasers in Medical Science, 39: 145. https://doi.org/10.1007/s10103-024-04099-8

42. Miyamoto, T., Oshima, Y., Ikuta, K., & Kinoshita, H. (2006). The heart rate increase at the onset of high-work intensity exercise is accelerated by central blood volume loading. European journal of applied physiology, 96: 86-96.

43. Kliszczewicz, B. M., Esco, M. R., Quindry, J. C., Blessing, D. L., Oliver, G. D., Taylor, K. J., & Price, B. M. (2016). Autonomic responses to an acute bout of high-intensity body weight resistance exercise vs. treadmill running. The Journal of Strength & Conditioning Research, 30(4): 1050-1058.

44. Wu, C. S., Hu, S. C. S., Lan, C. C. E., Chen, G. S., Chuo, W. H., & Yu, H. S. (2008). Low‐energy helium‐neon laser therapy induces repigmentation and improves the abnormalities of cutaneous microcirculation in segmental‐type vitiligo lesions. The Kaohsiung Journal of Medical Sciences, 24(4): 180-189.

45. Shuvaeva, V. N., Gorshkova, O. P., Kostylev, A. V., & Dvoretsky, D. P. (2011). Effect of laser irradiation on adrenoreactivity of pial arterial vessels in rats. Bulletin of Experimental Biology & Medicine, 151(1): 1-4.

46. Leal, E. C. P., Lopes-Martins, R. Á. B., Frigo, L., De Marchi, T., Rossi, R. P., de Godoi, V., Tmazoni, S. S., Silva, D. P., Basso, M., Filho, P. L., de Valls Corsetti, F., Iversen, V. V., & Bjordal, J. M. (2010). Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. Journal of Orthopaedic & Sports Physical Therapy, 40(8): 524-532.

47. Lanferdini, F. J., Baroni, B. M., Lazzari, C. D., Sakugawa, R. L., Dellagrana, R. A., Diefenthaeler, F., Caputo, F., & Vaz, M. A. (2023). Effects of photobiomodulation therapy on performance in successive time-to-exhaustion cycling tests: A randomized double-blinded placebo-controlled trial. Journal of Functional Morphology and Kinesiology, 8(4): 144. https://doi.org/10.3390/jfmk8040144

48. Ramos, L., Leal Junior, E. C. P., Pallotta, R. C., Frigo, L., Marcos, R. L., de Carvalho, M. H. C., Bjordal, J. M., & Lopes‐Martins, R. Á. B. (2012). Infrared (810 nm) low‐level laser therapy in experimental model of strain‐induced skeletal muscle injury in rats: effects on functional outcomes. Photochemistry and Photobiology, 88(1): 154-160.

Published
2025-01-13
How to Cite
Liu, Y., & Tong, Y. (2025). Effects of photobiomodulation therapy on acute recovery after exhausting cycling exercise. Molecular & Cellular Biomechanics, 22(1), 823. https://doi.org/10.62617/mcb823
Section
Article