WGCNA-based identification of anoikis-related subtypes, prognostic significance, and characterisation of the immune microenvironment in Philadelphia-negative acute lymphoblastic leukaemia
Abstract
The clinical outcomes and incidence of Philadelphia chromosome-negative B cell acute lymphoblastic leukaemia (ph-neg B-ALL) vary significantly across different age groups, influencing the prognosis. Despite recent advancements in diagnostic and therapeutic techniques, the detailed prognosis for ph-negative B-ALL across age demographics remains to be elucidated. In this study, clinical data were obtained from 80 patients with ph-neg B-ALL who were diagnosed at our centre. Ribonucleic acid sequencing was performed using their initial bone marrow aspirate samples. By employing weighted gene co-expression network analysis (WGCNA) on 408 anoikis-related genes (ARGs), four different modules were identified and subsequently analysed through bioinformatics. The WGCNA revealed distinct co-expression modules among ARGs. Specifically, the ARGs in the turquoise module might assess the risk associated with newly diagnosed ph-neg B-ALL. Additionally, the study revealed significant heterogeneity in the immune microenvironment and genome variance, highlighting the notable heterogeneity within the disease. 408 ARGs were screened out and four different co-expression modules were constructed by WGCNA algorithms from the RNA-sequencing data of 80 ph-neg B-ALL patients; The ARGs in the turquoise module were the most, and it can be used to divide the de novo ph-neg B-ALL patients to different risk groups(high-risk and low-risk); The ph-neg B-ALL patients can be divided into PS-1 and PS-2, there is heterogeneity of genomes between PS-1 and PS-2; Immune infiltration difference exists in between PS-1 and PS-2. In conclusion, our study holds significant value in exploring the molecular pathways and mechanisms associated with anoikis implicated in ph-neg B-ALL, and in facilitating the development of treatments and prognostic tools for this disease
References
1. Abou Dalle I, Jabbour E, Short NJ, et al. Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Current Treatment Options in Oncology. 2019; 20(1). doi: 10.1007/s11864-019-0603-z
2. Burmeister T, Schwartz S, Bartram CR, et al. Patients’ age and BCR-ABL frequency in adult B-precursor ALL: a retrospective analysis from the GMALL study group. Blood. 2008; 112(3): 918-919. doi: 10.1182/blood-2008-04-149286
3. Jabbour E, Richard-Carpentier G, Sasaki Y, et al. Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematol. 2020; 7(7): 523-533.doi:10.1016/s2352-3026(20)30144-7
4. Parikh SA, Litzow MR. Philadelphia chromosome-negative acute lymphoblastic leukemia: therapies under development. Future Oncology. 2014; 10(14): 2201-2212. doi: 10.2217/fon.14.81
5. Hong M, Clubb JD, Chen YY. Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell. 2020; 38(4): 473-488. doi: 10.1016/j.ccell.2020.07.005
6. Adeshakin FO, Adeshakin AO, Afolabi LO, et al. Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming. Frontiers in Oncology. 2021; 11. doi: 10.3389/fonc.2021.626577
7. Kim YN, Koo KH, Sung JY, et al. Anoikis Resistance: An Essential Prerequisite for Tumor Metastasis. International Journal of Cell Biology. 2012; 2012: 1-11. doi: 10.1155/2012/306879
8. Frisch S, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. The Journal of cell biology. 1994; 124(4): 619-626. doi: 10.1083/jcb.124.4.619
9. Frisch SM, Ruoslahti K. Integrins and anoikis. Current Opinion in Cell Biology. 1997; 9(5): 701-706. doi: https://doi.org/10.1016/S0955-0674(97)80124-X
10. Han H jun, Sung JY, Kim SH, et al. Fibronectin regulates anoikis resistance via cell aggregate formation. Cancer Letters. 2021; 508: 59-72. doi: 10.1016/j.canlet.2021.03.011
11. Amoedo ND, Rodrigues MF, Rumjanek FD. MITOCHONDRIA: Are mitochondria accessory to metastasis? The International Journal of Biochemistry & Cell Biology. 2014; 51: 53-57. doi: 10.1016/j.biocel.2014.03.009
12. Zhong X, Rescorla FJ. Cell surface adhesion molecules and adhesion-initiated signaling: Understanding of anoikis resistance mechanisms and therapeutic opportunities. Cellular Signalling. 2012; 24(2): 393-401. doi: 10.1016/j.cellsig.2011.10.005
13. Kakavandi E, Shahbahrami R, Goudarzi H, et al. Anoikis resistance and oncoviruses. Journal of Cellular Biochemistry. 2017; 119(3): 2484-2491. doi: 10.1002/jcb.26363
14. Di Micco R, Krizhanovsky V, Baker D, et al. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology. 2020; 22(2): 75-95. doi: 10.1038/s41580-020-00314-w
15. Yu S, Li Y, Ren H, et al. PDK4 promotes tumorigenesis and cisplatin resistance in lung adenocarcinoma via transcriptional regulation of EPAS1. Cancer Chemotherapy and Pharmacology. 2020; 87(2): 207-215. doi: 10.1007/s00280-020-04188-9
16. Wong AW, Paulson QX, Hong J, et al. Alcohol promotes breast cancer cell invasion by regulating the Nm23-ITGA5 pathway. Journal of Experimental & Clinical Cancer Research. 2011; 30(1). doi: 10.1186/1756-9966-30-75
17. Gilmore AP. Anoikis. Cell Death & Differentiation. 2005; 12(S2): 1473-1477. doi: 10.1038/sj.cdd.4401723
18. Hong Y, Zhang L, Tian X, et al. Identification of immune subtypes of Ph-neg B-ALL with ferroptosis related genes and the potential implementation of Sorafenib. BMC Cancer. 2021; 21(1). doi: 10.1186/s12885-021-09076-w
19. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008; 9(1). doi: 10.1186/1471-2105-9-559
20. Karim MR, Beyan O, Zappa A, et al. Deep learning-based clustering approaches for bioinformatics. Briefings in Bioinformatics. 2020; 22(1): 393-415. doi: 10.1093/bib/bbz170
21. Dourthe ME, Rabian F, Yakouben K, et al. Determinants of CD19-positive vs CD19-negative relapse after tisagenlecleucel for B-cell acute lymphoblastic leukemia. Leukemia. 2021; 35(12): 3383-3393. doi: 10.1038/s41375-021-01281-7
22. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nature Methods. 2015; 12(5): 453-457. doi: 10.1038/nmeth.3337
23. Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications. 2013; 4(1). doi: 10.1038/ncomms3612
24. Rooney MS, Shukla SA, Wu CJ, et al. Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity. Cell. 2015; 160(1-2): 48-61. doi: 10.1016/j.cell.2014.12.033
25. Wu F, Li G, Liu H, et al. Molecular subtyping reveals immune alterations in IDH wild‐type lower‐grade diffuse glioma. The Journal of Pathology. 2020; 251(3): 272-283. doi: 10.1002/path.5468
26. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. Journal of Clinical Investigation. 2017; 127(8): 2930-2940. doi: 10.1172/jci91190
27. Lonial, Weiss, Usmani et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. The Lancet. 2016; 387(10027): 1551-1560. doi:10.1016/S0140-6736(15)01120-4
28. Chen L, Zhang YH, Wang S, et al. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. Liu B, ed. PLOS ONE. 2017; 12(9): e0184129. doi: 10.1371/journal.pone.0184129
29. Eckhardt CM, Madjarova SJ, Williams RJ, et al. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surgery, Sports Traumatology, Arthroscopy. 2022; 31(2): 376-381. doi: 10.1007/s00167-022-07233-7
30. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences. 2005; 102(43): 15545-15550. doi: 10.1073/pnas.0506580102
31. Aldoss I, Yang D, Malki MMA, et al. Allogeneic Hematopoietic Cell Transplantation for Relapsed and Refractory Philadelphia Negative B Cell ALL in the Era of Novel Salvage Therapies. Transplantation and Cellular Therapy. 2021; 27(3): 255.e1-255.e9. doi: 10.1016/j.jtct.2020.12.020
32. Sattari Fard F, Jalilzadeh N, Mehdizadeh A, et al. Understanding and targeting anoikis in metastasis for cancer therapies. Cell Biology International. 2022; 47(4): 683-698. doi: 10.1002/cbin.11970
33. Qu J, Luo M, Zhang J, et al. A paradoxical role for sestrin 2 protein in tumor suppression and tumorigenesis. Cancer Cell International. 2021; 21(1). doi: 10.1186/s12935-021-02317-9
34. Korashy HM, Rahman AFMM, Kassem MG. Dasatinib. Profiles of Drug Substances, Excipients and Related Methodology. Published online 2014: 205-237. doi: 10.1016/b978-0-12-800173-8.00004-0
35. van Dijk EL, Jaszczyszyn Y, Naquin D, et al. The Third Revolution in Sequencing Technology. Trends in Genetics. 2018; 34(9): 666-681. doi: 10.1016/j.tig.2018.05.008
36. Khan SU, Fatima K, Malik F. Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clinical & Experimental Metastasis. 2022; 39(5): 715-726. doi: 10.1007/s10585-022-10172-9
37. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cellular & Molecular Immunology. 2020; 17(8): 807-821. doi: 10.1038/s41423-020-0488-6
38. Serafim Junior V, Fernandes GM de M, Oliveira-Cucolo JG de, et al. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine. 2020; 136: 155270. doi: 10.1016/j.cyto.2020.155270
39. Bagchi S, Yuan R, Engleman EG. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annual Review of Pathology: Mechanisms of Disease. 2021; 16(1): 223-249. doi: 10.1146/annurev-pathol-042020-042741
40. Chen LY, Kang LQ, Zhou HX, et al. Successful application of anti-CD19 CAR-T therapy with IL-6 knocking down to patients with central nervous system B-cell acute lymphocytic leukemia. Translational Oncology. 2020; 13(11): 100838. doi: 10.1016/j.tranon.2020.100838
41. Sun Z, Zhao Y, Wei Y, et al. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, IDH mutation, and immune filtration in glioblastoma. Frontiers in Immunology. 2022; 13. doi: 10.3389/fimmu.2022.939523
42. Ye G, Yang Q, Lei X, et al. Nuclear MYH9-induced CTNNB1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis. Theranostics. 2020; 10(17): 7545-7560. doi: 10.7150/thno.46001
Copyright (c) 2024 Na Li, Yang Hong, Ling Zhang, Aining Sun
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on all articles published in this journal is retained by the author(s), while the author(s) grant the publisher as the original publisher to publish the article.
Articles published in this journal are licensed under a Creative Commons Attribution 4.0 International, which means they can be shared, adapted and distributed provided that the original published version is cited.