A biomechanical investigation of High-Intensity Interval Training: Enhancing athletic performance through strength and coordination

  • Yucai Gao School of Physical Education, Shandong Normal University, Jinan 250358, China
  • Zixuan Zhang School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130012, China
  • Qiuyu Yu School of Marxist Theory, Capital University of Economics and Business, Beijing 100070, China
  • Zhihao Liu Graduate School, Kyungil University, Gyeongsan 38428, Korea
Keywords: High-Intensity Interval Training (HIIT); biomechanical performance; strength improvement; coordination enhancement; athletic performance; sports science; motion analysis; aerobic capacity; anaerobic power; fatigue resistance
Article ID: 960

Abstract

The current research examines how a High-Intensity Interval Training (HIIT) program affects the biomechanical performance of sports science students who just started their university study at Shandong Normal University. The research checked biomechanical changes in 50 students (25 male, 25 female) through a 12-week HIIT program. Before and after the program, tests were run to see changes in their sports abilities. The tests looked at how well students could do physical activities without getting tired, how strong they were in basic exercises like bench press, squat, and deadlift, and how well they could move their body. Some special tests checked their quickness, balance, and hand-eye work. Also, special cameras recorded their movements to see if joints moved better. Test results showed students got much better in all areas after HIIT. The way their body moved also got better, which made them do sports better. Based on these results, HIIT seems to help young sports students get better at physical activities.

References

1. Alibazi, R. J., Frazer, A. K., Pearce, A. J., Tallent, J., Avela, J., & Kidgell, D. J. (2022). Corticospinal and intracortical excitability is modulated in the knee extensors after acute strength training. Journal of Sports Sciences, 40(5), 561-570. DOI 10.1080/02640414.2021.2004681.

2. Briggs, B. C., Ryan, A. S., Sorkin, J. D., & Oursler, K. K. (2021). Feasibility and effects of High-Intensity Interval Training in older adults living with HIV. Journal of sports sciences, 39(3), 304-311. DOI 10.1080/02640414.2020.1818949.

3. García-Domínguez, E., Arc-Chagnaud, C., De la Rosa, A., Correas, Á. G., García-Domínguez, C., Carretero, A., ... & Viña, J. (2021). Multicomponent high intensity interval training induces positive adaptations in old glucose-6-phosphate dehydrogenase overexpressing mice. Free Radical Biology and Medicine, 165, 31-32. DOI 10.1016/j.freeradbiomed.2020.12.342.

4. Dransmann, M., Koddebusch, M., Gröben, B., & Wicker, P. (2021). Functional High-Intensity Interval Training LOWERS body mass and improves coordination, strength, muscular endurance, and aerobic endurance of inmates in a German prison. Frontiers in Physiology, 12, 733774. DOI 10.3389/fphys.2021.733774.

5. Riazati, S., Caplan, N., Matabuena, M., & Hayes, P. R. (2022). Gait and neuromuscular changes are evident in some masters club level runners 24-h after interval training run. Frontiers in Sports and Active Living, 4, 830278. DOI10.3389/fspor.2022.830278.

6. Breil, F. A., Weber, S. N., Koller, S., Hoppeler, H., & Vogt, M. (2010). Block training periodization in alpine skiing: effects of 11-day HIT on VO 2max and performance. European journal of applied physiology, 109, 1077-1086. DOI 10.1007/s00421-010-1455-1.

7. Pin-Barre, C., Hugues, N., Constans, A., Berton, E., Pellegrino, C., & Laurin, J. (2021). Effects of different High-Intensity Interval Training regimens on endurance and neuroplasticity after cerebral ischemia. Stroke, 52(3), 1109-1114. DOI10.1161/STROKEAHA.120.031873.

8. Venckunas, T., Brazaitis, M., Snieckus, A., Mickevicius, M., Eimantas, N., Subocius, A., ... & Kamandulis, S. (2022). Adding High-Intensity Interval Training to classical resistance training does not impede the recovery from inactivity-induced leg muscle weakness. Antioxidants, 12(1), 16. DOI 10.3390/antiox12010016.

9. Broatch, J. R., Petersen, A., & Bishop, D. J. (2014). Postexercise cold water immersion benefits are not greater than the placebo effect. Medicine & Science in Sports & Exercise, 46(11), 2139-2147. DOI 10.1249/MSS.0000000000000348.

10. Umutlu, G., Demirci, N., & Acar, N. E. (2020). Training-induced changes in muscle contraction patterns enhance exercise performance after short-term neuromuscular electrical stimulation. Isokinetics and Exercise Science, 28(4), 339-350. DOI 10.3233/IES-202111.

11. Venegas-Carro, M., Herring, J. T., Riehle, S., & Kramer, A. (2023). Jumping vs. running: Effects of exercise modality on aerobic capacity and neuromuscular performance after a six-week High-Intensity Interval Training. Plos one, 18(2), e0281737. DOI 10.1371/journal.pone.0281737.

12. Velasco-Orjuela, G. P., Domínguez-Sanchéz, M. A., Hernández, E., Correa-Bautista, J. E., Triana-Reina, H. R., García-Hermoso, A., ... & Ramírez-Vélez, R. (2018). Acute effects of high-intensity interval, resistance or combined exercise protocols on testosterone–cortisol responses in inactive overweight individuals. Physiology & behavior, 194, 401-409. DOI 10.1016/j.physbeh.2018.06.034.

13. Martinez-Valdes, E., Farina, D., Negro, F., Del Vecchio, A., & Falla, D. (2018). Early motor unit conduction velocity changes to hiit versus continous training. Medicine and science in sports and exercise, 1. DOI 10.1249/MSS.0000000000001705.

14. Guo, C., Yao, Y., Ma, C., & Wang, Z. (2023). High-Intensity Interval Training improves cognitive impairment of vascular dementia rats by up-regulating expression of brain-derived neurotrophic factor in the hippocampus. NeuroReport, 34(8), 411-418. DOI 10.1097/WNR.0000000000001903.

15. Souza, A. A., Jesus, S. M., Hora, J. E. J., Farah, B. Q., Germano-Soares, A. H., Ribeiro, A. S., ... & Andrade-Lima, A. (2023). Different functional exercise orders induce similar acute cardiac autonomic modulation responses in healthy adults: A randomized controlled crossover study. Science & Sports, 38(4), 370-376. DOI 10.1016/j.scispo.2022.03.012.

16. Martin-Niedecken, A. L., Mahrer, A., Rogers, K., de Bruin, E. D., & Schättin, A. (2020). “HIIT” the ExerCube: comparing the effectiveness of functional High-Intensity Interval Training in conventional vs. exergame-based training. Frontiers in Computer Science, 2, 33. DOI 10.3389/fcomp.2020.00033.

17. Abel, R., Zoth, N., Wilke, C., & Schmidt, T. (2024). Exercise-Based Prehabilitation In Orthopaedics, Cardiology And Oncology. Die Rehabilitation, 63(1), 51-64. DOI 10.1055/a-2126-7431.

18. Amato, A., Proia, P., Alioto, A., Rossi, C., Pagliaro, A., Ragonese, P., ... & Baldassano, S. (2024). High-Intensity Interval Training improves bone remodeling, lipid profile, and physical function in multiple sclerosis patients. Scientific Reports, 14(1), 16195. DOI 10.1038/s41598-024-66448-5.

19. Luo, L., Liu, M., Xie, H., Fan, Y., Zhang, J., Liu, L., ... & Wu, Y. (2021). High‐Intensity Interval Training Improves Physical Function, Prevents Muscle Loss, and Modulates Macrophage‐Mediated Inflammation in Skeletal Muscle of Cerebral Ischemic Mice. Mediators of inflammation, 2021(1), 1849428. DOI 10.1155/2021/1849428.

20. Wagner, H., Gierlinger, M., Adzamija, N., Ajayi, S., Bacharach, D. W., & Von Duvillard, S. P. (2017). Specific physical training in elite male team handball. The Journal of Strength & Conditioning Research, 31(11), 3083-3093. DOI10.1519/JSC.0000000000002094.

21. Pin-Barre, C., Constans, A., Brisswalter, J., Pellegrino, C., & Laurin, J. (2017). Effects of high-versus moderate-intensity training on neuroplasticity and functional recovery after focal ischemia. Stroke, 48(10), 2855-2864. DOI10.1161/STROKEAHA.117.017962.

22. García-Fernández, P., Cimadevilla, E., Guodemar-Pérez, J., Cañuelo-Márquez, A. M., Heredia-Elvar, J. R., Fernández-Rodríguez, T., ... & Maté-Muñoz, J. L. (2021). Muscle recovery after a single bout of functional fitness training. International Journal of Environmental Research and Public Health, 18(12), 6634. DOI 10.3390/ijerph18126634.

23. Formighieri, C., Müller, D. C., de Asteasu, M. L. S., Mello, A., Teodoro, J. L., Boeno, F., ... & Cadore, E. L. (2022). Interindividual variability of adaptations following either traditional strength or power training combined to endurance training in older men: A secondary analysis of a randomized clinical trial. Experimental Gerontology, 169, 111984. DOI 10.1016/j.exger.2022.111984.

24. Liu, T. C., Lin, C. H., Huang, C. Y., Ivy, J. L., & Kuo, C. H. (2013). Effect of acute DHEA administration on free testosterone in middle-aged and young men following High-Intensity Interval Training. European journal of applied physiology, 113(7), 1783-1792. DOI 10.1007/s00421-013-2607-x.

25. Znazen, H., Slimani, M., Hadadi, A., Alzahrani, T., Tod, D., Bragazzi, N. L., & Souissi, N. (2021). Acute effects of moderate versus high-intensity strength exercise on attention and mood states in female physical education students. Life, 11(9), 931. DOI 10.3390/life11090931.

26. Abbasian, S., Ravasi, A. A., Haghighi, A. H., Aydin, S., Delbari, A., & Aydın, S. (2023). Preconditioning intensive training ameliorates reduction of transcription biofactors of PGC1α-pathway in paretic muscle due to cerebral ischemia. Biotechnic & Histochemistry, 98(1), 46-53. DOI 10.1080/10520295.2022.2098535.

27. Colomer‐Poveda, D., Hortobágyi, T., Keller, M., Romero‐Arenas, S., & Márquez, G. (2020). Training intensity‐dependent increases in corticospinal but not intracortical excitability after acute strength training. Scandinavian journal of medicine & science in sports, 30(4), 652-661. DOI10.1111/sms.13608.

28. Bozdarov, J., Jones, B. D., Daskalakis, Z. J., & Husain, M. I. (2023). Boxing as an intervention in mental health: A scoping review. American Journal of Lifestyle Medicine, 17(4), 589-600.DOI 10.1177/15598276221124095.

29. Pahlavani, H. A. (2023). Exercise therapy to prevent and treat Alzheimer’s disease. Frontiers in Aging Neuroscience, 15, 1243869. DOI 10.3389/fnagi.2023.1243869.

30. Fassone, M., Bisio, A., Puce, L., Biggio, M., Tassara, F., Faelli, E., ... & Bove, M. (2023). The metronome-based methodology to monitor the stroke length changes in trained swimmers. Frontiers in Sports and Active Living, 5, 1268146. DOI10.3389/fspor.2023.1268146.

31. Li, J., & Du, X. (2022). Core training in martial arts athletes. Revista Brasileira de Medicina do Esporte, 29, e2022_0376. DOI 10.1590/1517-8692202329012022_0328.

32. Luebbe, A., Rutherford, Z., Diminic, S., Roovers, H., Patel, M., & Whiteford, H. (2024). Taking a strengths-based approach to mental health in rural communities: A systematic literature review. Australian and New Zealand Journal of Public Health, 48(6), 100201.DOI 10.1016/j.anzjph.2024.100201.

33. Radigan, M., & Wang, R. (2013). Relationships between youth and caregiver strengths and mental health outcomes in community based public mental health services. Community mental health journal, 49(5), 499-506.DOI 10.1007/s10597-011-9476-8.

34. Hosseini, S. A. Ego-strength mediates the relationship between religious health behaviors and mental health symptoms during the COVID-19 pandemic in Iran. Romanian Journal of, 125(3), 432.DOI 10.55453/rjmm.2022.125.3.11.

35. Niemiec, R. M. (2023). Mental health and character strengths: the dual role of boosting well-being and reducing suffering. Mental Health and Social Inclusion, 27(4), 294-316.DOI 10.1108/MHSI-01-2023-0012.

Published
2024-12-24
How to Cite
Gao, Y., Zhang, Z., Yu, Q., & Liu, Z. (2024). A biomechanical investigation of High-Intensity Interval Training: Enhancing athletic performance through strength and coordination. Molecular & Cellular Biomechanics, 21(4), 960. https://doi.org/10.62617/mcb960
Section
Article