Description
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications. This journal will encourage the exchange of ideas that may be seminal, or hold promise to stimulate others to new findings.
In 2024, SIN-CHN SCIENTIFIC PRESS acquired Molecular & Cellular Biomechanics from Tech Science Press, and will publish this journal from Volume 21, 2024. As of 1 March 2024, new submissions should be made to our Open Journal Systems. To view your previous submissions, please access TSP system.
Latest Articles
-
Open Access
Article
Magnetic resonance imaging diagnosis of ankle joint athletic injury based on machine learning algorithmsHongxia Han, Yuanwei Li
Molecular & Cellular Biomechanics, Vol.21, No.3, 21(3), 414 , 2024, DOI: 10.62617/mcb414
Abstract:
The diagnosis of ankle joint athletic injuries using traditional magnetic resonance imaging (MRI) relies on the subjective judgment and experience of doctors, and small structural changes in athletic injuries are difficult to accurately detect and diagnose. By using machine learning (ML) algorithms and image processing techniques to obtain objective and consistent diagnostic results, the accuracy of diagnosing ankle joint athletic injuries can be improved. This article collected a large number of MRI images of ankle joint athletic injuries, and preprocessed the collected images to extract morphological and texture features, and perform feature fusion. The Residual Network (ResNet) was improved, and the Leaky linear rectification function (ReLU, Corrected linear unit) activation function was introduced. The transfer learning was utilized to increase the convergence speed of the model, and the global maximum pooling layer and softmax classifier were used to construct the fully connected layer. After sufficient training on the training set, the findings on the test set indicated that the average accuracy of the improved ResNet model for ankle joint injury classification was 98.3%. The use of an improved ResNet model can effectively improve the diagnostic effectiveness of ankle joint athletic injuries, providing a new method for medical diagnosis of MRI.
-
Open Access
Article
Virtual reality technology in rural sports sustainable development reform researchWang Luo, Xianglin Luo
Molecular & Cellular Biomechanics, Vol.21, No.3, 21(3), 366 , 2024, DOI: 10.62617/mcb366
Abstract:
Rural sports support unity among communities, encourage physical exercise in natural environments, and preserve regional traditions all of which are beneficial to sustainable development. Villages frequently encourage environmental stewardship and conservation initiatives, highlight cultural history, and promote local economies. By providing realistic practice environments and simulated games, we used virtual reality (VR) technology to improve rural sports and lessen the demand for substantial development infrastructure. A potential disadvantage of adopting VR technology for rural sports is the possibility of insufficient facilities and supplies available in remote areas. In this paper, we propose a novel World Cup Search-driven Quadratic Support Vector Machine (WCS-QSVM) method to enhance the performance of VR in rural sports. We use one of the Chinese traditional games dragon boating. We employ an immersive setup that replicates the kinematic and sensory subtleties of dragon boating through the use of virtual reality. To allow users to participate in real-world paddling activities, such as moving iron rods on a boat with a reasonably replicated resistance to water, we use a controller-based approach. As a result, we evaluate the performance of our proposal. According to the findings, the use of VR can enhance the growth of sustainable development in rural sports.
-
Open Access
Article
Exploring the influence of body movements on spatial perception in landscape and interior designPengfei Zhao
Molecular & Cellular Biomechanics, Vol.21, No.3, 21(3), 434 , 2024, DOI: 10.62617/mcb434
Abstract:
This study investigates the influence of body movements on spatial perception in both landscape and interior design environments, focusing on how physical interactions shape spatial understanding beyond visual perception alone. Grounded in the theory of embodied cognition, the research examines how gait, posture, and movement dynamics affect spatial awareness. The study captures detailed data on movement patterns and visual engagement across different spatial contexts using a combination of real-world observations and Virtual Reality (VR) simulations, motion-tracking systems, wearable sensors, and eye-tracking technology. A total of 157 participants, aged 20 to 65, navigated both outdoor landscapes and indoor environments, with key variables such as surface materials, spatial layout, and lighting conditions manipulated to assess their effects on spatial perception. The study measured gait speed, step frequency, path deviations, time to destination, visual attention, and subjective ratings of perceived openness, ease of movement, and emotional response. Key findings include that surface materials significantly influenced gait speed and step frequency. For example, participants walking on concrete had a significantly faster gait speed (mean difference = 0.5220, p = 0.001) than those walking on gravel. In terms of spatial layout, the two-way Analysis of variance (ANOVA) results showed that winding paths led to more path deviations ( F -statistic = 350.00, p = 3.19 × 10 −8 ) and longer times to destination ( F -statistic = 1744.00, p = 2.39 ´ 10 − 11 ) compared to straight paths. The environment type (landscape vs. interior) also significantly affected navigation, with landscape participants showing a more significant deviation from direct paths ( F -statistic = 19.60, p = 2.37 × 10 −3 ). Visual engagement data, analyzed through a chi-square test, indicated that vertical elements like walls approached significance in attracting visual attention (Chi-square = 2.88, p = 0.0896), while other elements like trees and benches had less impact. The Wilcoxon signed-rank test results showed significant differences between real-world and VR experiences in perceived openness ( W -statistic = 0.0, p = 0.001953), ease of movement ( W -statistic = 0.0, p = 0.001953), and comfort ( W -statistic = 0.0, p = 0.001953), highlighting VR’s limitations in replicating the full embodied experience of physical spaces.
-
Open Access
Article
Evaluate the effect of exercise core strength training on antioxidant enzyme activity in women from a biomechanical perspectiveYingshun Li, Yingxue Li
Molecular & Cellular Biomechanics, Vol.21, No.3, 21(3), 232 , 2024, DOI: 10.62617/mcb232
Abstract:
At present, the incidence rate of chronic diseases is increasing year by year. A variety of antioxidant enzymes in the human body, such as Superoxide Dismutase (SOD), Nitric Oxide Synthase (NOS), Glutathione Peroxidase (GSH Px), Malonic Dialdehyde (MDA) and Catalase (CAT), help to inhibit the generation of oxygen free radicals and play a certain role in preventing the occurrence of chronic diseases. The research on the activity of antioxidant enzymes and the delivery of antioxidant drugs has gradually become the focus of relevant scholars. The physical quality of women is lower than that of men, so it is of great practical significance to study the antioxidant enzyme activity of women. Therefore, this paper explores the influence of exercise core strength training on women’s antioxidant enzyme activity from a biomechanical perspective and concludes that core strength training can improve female students’ SOD content level by 2.58%, and can improve female students’ NOS content level, GSH-Px content level, and MDA content level. Sports core strength training has a positive impact on women’s antioxidant enzyme activity.
-
Open Access
Article
Prediction and treatment of joint injuries in basketball training based on improved regression algorithm from the perspective of sports biomechanicsYan Bai, Xiao Yang
Molecular & Cellular Biomechanics, Vol.21, No.3, 21(3), 258 , 2024, DOI: 10.62617/mcb258
Abstract:
With the increasing popularity of basketball, especially in collegiate competitions like the University Basketball Super League, the sport has become a significant part of student life. The intensity of basketball training and competition has risen, necessitating athletes to have enhanced physical capabilities to meet modern demands. This heightened physical confrontation often leads to various injuries, with joint injuries being particularly common and impactful. This study integrates sports biomechanics with machine learning to address the prediction and treatment of joint injuries in basketball training. By employing an improved regression algorithm and leveraging high-performance computing, we have experimentally analyzed the prediction of joint injuries and proposed effective solutions. Our results indicate that the difference between the highest and lowest predicted residual values for the Back Propagation (BP) model was 0.92, and for the Extreme Learning Machine (ELM) regression model was 0.87. Notably, the improved ELM regression model demonstrated a reduced residual difference of 0.43. This improvement suggests that the enhanced ELM regression model offers superior prediction accuracy for joint injuries in basketball training and provides more comprehensive monitoring of athletes’ physical health, thereby supporting the advancement of basketball training programs.