Structural characterization of antiviral compounds from medicinal plants against SARS-CoV-2: A computational study

  • Fatemeh Mollaamin Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey
  • Majid Monajjemi Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 496969191, Iran
Keywords: virus; natural products; Covid19; antiviral secondary metabolites; mechanobiology
Article ID: 1114

Abstract

Natural products are vital and rich sources for plant-based drugs and new medicines. Recent studies emphasize secondary metabolites of natural products due to their unparalleled pharmacological action, biological activity and high usage cost. In addition, with the progress of investigation on biosynthesis and molecular metabolism of medicinal plants, the procedures for illustrating the pharmacological impacts and biological activity of these compounds are firmly developing. The principal section of the translation process is the synthesis of secondary metabolites. In this work, seven flavonoids, namely apigenine–7–glucoside, catechin, demethoxycurcumine, kaempferol, naringenin, oleuropein and quercetin have also previously been reported to inhibit RNA (Ribonucleic acid) replication and viral translation. Among applied extracted phytochemicals in this investigation, oleuropein’s has exhibited lowest Gibbs free energy of −1206.893 × 103 kcal/mol with high dipole moment of 6.1962 Debye. In this study, we combine CAM-B3LYP-D3 and NQR (Nuclear quadrupole resonance) for evaluating plant-derived anti-SARS-CoV-2 compounds through computationally estimating the binding mechanisms and thermodynamic stability of seven flavonoids against SARS-CoV-2’s TMH (Tyrosine 160–Methionine 161–Histidine 162) active site.

References

1. Zhang J, Zhou L, Yang Y, et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet. 2020; 395: e39. doi: 10.1016/S0140-6736(20)30313-5

2. Salih WA, Al-Taie A. Synthesis and characterization of laser-ablated silver and titanium oxide nanoparticles: Implications for drug delivery. New Materials, Compounds and Applications. 2024; 8(2): 199-222. doi:10.62476/nmca82199

3. Yan B, Chu H, Yang D, et al. Characterization of the Lipidomic Profile of Human Coronavirus-Infected Cells: Implications for Lipid Metabolism Remodeling upon Coronavirus Replication. Viruses. 2019; 11(1): 73. doi: 10.3390/v11010073

4. Abdullayeva AA, Ahmadova NE, Atakishiyeva GT, et al. Molecular docking of 4-azido-2-(4-substituted-phenyl)-5-(2-nitrophenyl)-2h-1,2,3-triazoles. New Materials, Compounds and Applications. 2024; 8(1): 5-12. doi:10.62476/nmca8105

5. Sarasia EM, Afsharnezhad S, Honarparvar B, et al. Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives. Physics and Chemistry of Liquids. 2011; 49(5): 561-571. doi: 10.1080/00319101003698992

6. Mollaamin F. Structural and Functional Characterization of Medicinal Plants as Selective Antibodies towards Therapy of COVID-19 Symptoms. Antibodies. 2024; 13(2): 38. doi: 10.3390/antib13020038

7. Mitton B, Rule R, Said M. Laboratory evaluation of the BioFire FilmArray Pneumonia plus panel compared to conventional methods for the identification of bacteria in lower respiratory tract specimens: a prospective cross-sectional study from South Africa. Diagnostic Microbiology and Infectious Disease. 2021; 99(2): 115236. doi: 10.1016/j.diagmicrobio.2020.115236

8. Pashayev BG, Aliyev LP, Hajiyeva ShN, Viscous flow and structural properties in water-ethanol-urea systems. Advanced Physical Research. 2024; 6(1): 29-35. doi: 10.62476/apr61.35

9. Alzand KI, Younis HR, Salman HD, et al., New Materials, Compounds and Applications. 2024; 8(1): 75-86. doi:10.62476/nmca8175

10. Caméléna F, Moy AC, Dudoignon E, et al. Performance of a multiplex polymerase chain reaction panel for identifying bacterial pathogens causing pneumonia in critically ill patients with COVID-19. Diagnostic Microbiology and Infectious Disease. 2021; 99(1): 115183. doi: 10.1016/j.diagmicrobio.2020.115183

11. Mollaamin F. Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy. Computation. 2023; 11(4): 84. doi: 10.3390/computation11040084

12. Van TT, Kim TH, Butler-Wu SM. Evaluation of the Biofire FilmArray meningitis/encephalitis assay for the detection of Cryptococcus neoformans/gattii. Clinical Microbiology and Infection. 2020; 26(10): 1375-1379. doi: 10.1016/j.cmi.2020.01.007

13. Alzand KI, Younis HR, Salman HD, et al. Citrus aurantium L. peels and seeds: Phytochemical screening and antibacterial activity. New Materials, Compounds and Applications. 2024; 8(1): 75-86. doi:10.62476/nmca8175

14. Cailleaux M, Pilmis B, Mizrahi A, et al. Impact of a multiplex PCR assay (FilmArray) on the management of patients with suspected central nervous system infections. European Journal of Clinical Microbiology & Infectious Diseases. 2019; 39(2): 293-297. doi: 10.1007/s10096-019-03724-7

15. Sheet SHM, Mahmod RB, Saeed NHM, et al. Theoretical study for comparison of pKa of a number of Achiff bases by employing parameters derived from DFT and MP2 method. New Materials, Compounds and Applications. 2024; 8(1): 94-108. doi: 10.62476/nmca8194

16. Mollaamin F. Characterizing the structural and physicochemical properties of medicinal plants as a proposal for treating of viral malady. Trends in Immunotherapy. 2023; 7(2): 2329. doi: 10.24294/ti.v7.i2.2329

17. Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery. 2021; 20(3): 200-216. doi: 10.1038/s41573-020-00114-z

18. Lin LT, Hsu WC, Lin CC. Antiviral Natural Products and Herbal Medicines. Journal of Traditional and Complementary Medicine. 2014; 4(1): 24-35. doi: 10.4103/2225-4110.124335

19. Kumar Shakya A, Arvind Kumar Shakya C. Medicinal Plants: Future Source of New Drugs. International Journal of Herbal Medicine. 2016.

20. Ibrahim AK, Youssef AI, Arafa AS, et al. Anti-H5N1 virus flavonoids from Capparis sinaicaVeill. Natural Product Research. 2013; 27(22): 2149-2153. doi: 10.1080/14786419.2013.790027

21. Yarmolinsky L, Huleihel M, Zaccai M, et al. Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia. 2012; 83(2): 362-367. doi: 10.1016/j.fitote.2011.11.014

22. Orhan DD, Özçelik B, Özgen S, et al. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiological Research. 2010; 165(6): 496-504. doi: 10.1016/j.micres.2009.09.002

23. Riva A, Ronchi M, Petrangolini G, et al. Improved Oral Absorption of Quercetin from Quercetin Phytosome, a New Delivery System Based on Food Grade Lecithin. European Journal of Drug Metabolism and Pharmacokinetics. 2018; 44(2): 169-177. doi: 10.1007/s13318-018-0517-3

24. Hakobyan A, Arabyan E, Avetisyan A, et al. Apigenin inhibits African swine fever virus infection in vitro. Archives of Virology. 2016; 161(12): 3445-3453. doi: 10.1007/s00705-016-3061-y

25. Huang H, Zhou W, Zhu H, et al. Baicalin benefits the anti-HBV therapy via inhibiting HBV viral RNAs. Toxicology and Applied Pharmacology. 2017; 323: 36-43. doi: 10.1016/j.taap.2017.03.016

26. Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters. 2004; 393(1-3): 51-57. doi: 10.1016/j.cplett.2004.06.011

27. Grimme S, Antony J, Ehrlich S, et al. A consistent and accurateab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics. 2010; 132(15). doi: 10.1063/1.3382344

28. Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford CT; 2016.

29. Mirzayeva DM, Aghayeva SA, Kaplina SP, et al. Mechanism of formation water molecules and chemical bonds in Leptothrix materials. Advanced Physical Research. 2024; 6(1): 5-14. doi: 10.62476/apr61514

30. Roy TK, Kopysov V, Pereverzev A, et al. Intrinsic structure of pentapeptide Leu-enkephalin: geometry optimization and validation by comparison of VSCF-PT2 calculations with cold ion spectroscopy. Physical Chemistry Chemical Physics. 2018; 20(38): 24894-24901. doi: 10.1039/c8cp03989e

31. Monajjemi M, Mollaamin F, Shojaei S. An overview on Coronaviruses family from past to Covid-19: introduce some inhibitors as antiviruses from Gillan’s plants. Biointerface Research in Applied Chemistry. 2020; 10(3): 5575-5585. doi: 10.33263/briac103.575585

32. Zadeh MAA, Lari H, Kharghanian L, et al. Density Functional Theory Study and Anti-Cancer Properties of Shyshaq Plant: In View Point of Nano Biotechnology. Journal of Computational and Theoretical Nanoscience. 2015; 12(11): 4358-4367. doi: 10.1166/jctn.2015.4366

33. Dawoud RA, Shehata RS, Moawod H, et al. Impact of bio-organic fertilization and nitrogen levels on maize (Zea mays L.) resilience. New Materials, Compounds and Applications. 2024; 8(1): 43-61. doi:10.62476/nmca8143

34. Demukhamedova SD, Aliyeva IN. Computer simulation of the structure of some azo-derivatives of β-diketones by the methods of quantum chemistry. New Materials, Compounds and Applications. 2024; 8(1): 24-42. doi: 10.62476/nmca8124

35. Ni W, Li G, Zhao J, et al. Use of Monte Carlo simulation to evaluate the efficacy of tigecycline and minocycline for the treatment of pneumonia due to carbapenemase-producing Klebsiella pneumoniae. Infectious Diseases. 2018; 50(7): 507-513. doi: 10.1080/23744235.2018.1423703

36. Mollaamin F. Physicochemical investigation of anti-covid19 drugs using several medicinal plants. Journal of the Chilean Chemical Society. 2022; 67(2): 5537-5546. doi: 10.4067/s0717-97072022000205537

37. McArdle S, Mayorov A, Shan X, et al. Digital quantum simulation of molecular vibrations. Chemical Science. 2019; 10(22): 5725-5735. doi: 10.1039/c9sc01313j

38. Eberhardt J, Santos-Martins D, Tillack A, et al. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling. 2021.

39. Ezzat MO, Razik BMA, Shihab WA. Molecular modelling and theoretical design of novel nirmatrelvir derivatives as SARS-CoV-2 entry inhibitors. New Materials, Compounds and Applications. 2024; 8(2): 178-189. doi:10.62476/nmca82178.

40. Kawczak P, Bober L, Bączek T. QSAR Analysis of Selected Antimicrobial Structures Belonging to Nitro-derivatives of Heterocyclic Compounds. Letters in Drug Design & Discovery. 2020; 17(2): 214-225. doi: 10.2174/1570180815666181004112947

41. Ibrahimova SA, Mukhtarova SH, Eyvazova SM, et al. Prediction of biological activity by means of synthesis and QSAR model of phenylhydrazone based on methyl 4-formylbenzoate. New Materials, Compounds and Applications. 2024; 8 (3): 373-389. doi:10.62476/nmca83373

42. Eisenreich W, Leberfing J, Rudel T, et al. Interactions of SARS-CoV-2 with Human Target Cells—A Metabolic View. International Journal of Molecular Sciences. 2024; 25(18): 9977. doi: 10.3390/ijms25189977

43. Yadav R, Chaudhary JK, Jain N, et al. Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells. 2021; 10(4): 821. doi: 10.3390/cells10040821

44. Justo Arevalo S, Castillo-Chávez A, Uribe Calampa CS, et al. What do we know about the function of SARS-CoV-2 proteins?. Frontiers in Immunology. 2023; 14. doi: 10.3389/fimmu.2023.1249607

45. Srinivasan V, Brognaro H, Prabhu PR, et al. Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease. Communications Biology. 2022; 5(1). doi: 10.1038/s42003-022-03737-7

46. Kumar K, Debnath P, Singh S, et al. An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance. Stresses. 2023; 3(3): 570-585. doi: 10.3390/stresses3030040

47. Orfali R, Rateb ME, Hassan HM, et al. Sinapic Acid Suppresses SARS CoV-2 Replication by Targeting Its Envelope Protein. Antibiotics. 2021; 10(4): 420. doi: 10.3390/antibiotics10040420

48. Goc A, Sumera W, Rath M, et al. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLOS ONE. 2021; 16(6): e0253489. doi: 10.1371/journal.pone.0253489

49. Tirado-Kulieva VA, Hernández-Martínez E, Choque-Rivera TJ. Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. Heliyon. 2022; 8(9): e10702. doi: 10.1016/j.heliyon.2022.e10702

50. Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, et al. Polyphenols and their potential role to fight viral diseases: An overview. Science of The Total Environment. 2021; 801: 149719. doi: 10.1016/j.scitotenv.2021.149719

51. Kim HK, Choi YH, Verpoorte R. NMR-based metabolomic analysis of plants. Nature Protocols. 2010; 5(3): 536-549. doi: 10.1038/nprot.2009.237

52. Safarov JE, Sultanova ShA, Mambetsheripova AA, et al. Mathematical modelling of drying process. Advanced Physical Research. 2024; 6(3): 255-262. doi: 10.62476/apr63255

53. Nur Siti Fatimah WO, Deden Saprudin D, Hamim Hamim H. Profile of Secondary Metabolites and Metal in Jatropha curcas L. and Reutealis trisperma Plants Grown in the Media Contaminated by Gold Mining Tailings using LC-MS/MS. Materials International. 2024; 6(1): 6. doi:10.33263/Materials61.006

54. Trontelj Z, Pirnat J, Jazbinšek V, et al. Nuclear Quadrupole Resonance (NQR)—A Useful Spectroscopic Tool in Pharmacy for the Study of Polymorphism. Crystals. 2020; 10(6): 450. doi: 10.3390/cryst10060450

55. Sciotto R, Ruiz Alvarado IA, Schmidt WG. Substrate Doping and Defect Influence on P-Rich InP(001): H Surface Properties. Surfaces. 2024; 7(1): 79-87. doi: 10.3390/surfaces7010006

56. Luo J, Wang C, Wang Z, et al. NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3*. Chinese Physics B. 2020; 29(6): 067402. doi: 10.1088/1674-1056/ab892d

57. Smith JAS. Nuclear quadrupole resonance spectroscopy. General principles. Journal of Chemical Education. 1971; 48(1): 39. doi: 10.1021/ed048p39

58. Garroway AN. Appendix K: Nuclear quadrupole resonance. In: Jacqueline MacDonald, J. R. Lockwood: Alternatives for Landmine Detection. Report MR-1608, Rand Corporation; 2003.

59. Poleshchuck OK, Kalinna EL, Latosinska JN, Koput J. Application of density functional theory to the analysis of electronic structure and quadrupole interaction in dimers of transition and non-transition elements. Journal of Molecular Structure: Theochem. 2001; 547 (1-3): 233-243. doi: 10.1016/S0166-1280(01)00636-4

60. Young HA, Freedman RD. Sears and Zemansky's University Physics with Modern Physics, 13th ed. Boston: Addison-Wesley; 2012.

61. Abbasi M, Mansourian M, Oskouie AA, et al. In-silico study MM/GBSA binding free energy and molecular dynamics simulation of some designed remdesivir derivatives as the inhibitory potential of SARS-CoV-2 main protease. Research in Pharmaceutical Sciences. 2024; 19(1): 29-41. doi: 10.4103/1735-5362.394818

Published
2025-02-24
How to Cite
Mollaamin, F., & Monajjemi, M. (2025). Structural characterization of antiviral compounds from medicinal plants against SARS-CoV-2: A computational study. Molecular & Cellular Biomechanics, 22(3), 1114. https://doi.org/10.62617/mcb1114
Section
Article