Delivery of cations (Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+) into the cells by anthocyanins through Physico-chemical assessment: A molecular simulation study

  • Fatemeh Mollaamin Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey
  • Majid Monajjemi Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1496969191, Iran
Keywords: fruits and vegetables; ACNs; cation metal chelation; water
Article ID: 206

Abstract

Anthocyanins (ACNs) are secondary metabolites responsible for most of the red to purple pigmentation found in flowers, fruits, and leaves. Clusters of metal ions of Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+ joined to ACNs in water media were studied for unraveling the color shifting of different complexes of these structures in the low ranges of pH. In this verdict, it has been studied the metallic cations diffusing of deprotonating for the anthocyanin (ACN) (B)-ring of Malvidin (Mal), Peonidin (Peo), Delphinidin (Del), Pet, and Cyanidin (Cya) in water. The difference of heat of formation (∆Hf) among clusters of metallic cations jointed to ACNs has been illustrated toward the double bonds and carbonyl groups by the chelation of (B)-ring for cyanidin, delphinidin and petunidin ACNs in two media of gas and water that explains the stability and color of [ACN-metallic cations] cluster chelation. The complexes of Ga3+ → Pet, Cr3+ → Pet, Mg2+ → Pet and Al3+ → Cya, Ga3+ → Cya, Mg2+ → Cya have indicated the maximum absorbance in the low concentration. The mechanism of cation-induced ACNs mainly depends on the location of active zones of functionalized O-atoms in ACN and divalent or trivalent cations characteristics. Regarding the obtained results, regular consumption of some vegetables and fruits, which are rich in ACN molecules, should be helpful to stop viral infectious by decreasing pathogenicity and propagation of viral diseases.

References

1. Alomair L, Mustafa S, Jafri MS, et al. Molecular Dynamics Simulations to Decipher the Role of Phosphorylation of SARS-CoV-2 Nonstructural Proteins (nsps) in Viral Replication. Viruses. 2022; 14(11): 2436. doi: 10.3390/v14112436

2. Zadeh MAA, Lari H, Kharghanian L, et al. Density Functional Theory Study and Anti-Cancer Properties of Shyshaq Plant: In View Point of Nano Biotechnology. Journal of Computational and Theoretical Nanoscience. 2015; 12(11): 4358-4367. doi: 10.1166/jctn.2015.4366

3. Monajjemi M, Afsharnezhad S, Jaafari MR, Mirdamadi S, Mollaamin F, Monajemi H, Investigation of energy and NMR isotropic shift on the internal rotation Barrier of Θ4 dihedral angle of the DLPC: A GIAO study. Chemistry. 2008; 17(1): 55-69.

4. Monajjemi M, Mollaamin F, Shojaei S, An overview on coronaviruses family from past to COVID-19: Introduce some inhibitors as antiviruses from Gillan’s plants. 2020; 10(3): 5575-5585. doi: 10.33263/BRIAC103.575585

5. Shahriari S, Monajjemi M, Mollaamin F. DETERMINATION OF PROTEINS SPECIFICATION WITH SARS- COVID-19 BASED LIGAND DESIGNING. Journal of the Chilean Chemical Society. 2022; 67(2): 5468-5476. doi: 10.4067/s0717-97072022000205468

6. Majeed A, Zhang X. On the Adoption of Modern Technologies to Fight the COVID-19 Pandemic: A Technical Synthesis of Latest Developments. COVID. 2023; 3(1): 90-123. doi: 10.3390/covid3010006

7. Mollaamin F. Conocimiento de enfermedades virales terapéuticas: aplicación de SWCNT en la administración de fármacos. Revista Colombiana de Química. Published online April 10, 2024: 28-35. doi: 10.15446/rev.colomb.quim.v52n2.111888

8. Mollaamin F. Characterizing the structural and physicochemical properties of medicinal plants as a proposal for treating of viral malady. Trends in Immunotherapy. 2023; 7(2): 2329. doi: 10.24294/ti.v7.i2.2329

9. Mollaamin F, Monajjemi M. THERMODYNAMIC RESEARCH ON THE INHIBITORS OF CORONAVIRUS THROUGH DRUG DELIVERY METHOD. Journal of the Chilean Chemical Society. 2021; 66(2): 5195-5205. doi: 10.4067/s0717-97072021000205195

10. Tahan A, Mollaamin F. Monajjemi, M.Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russ. J. Phys. ChemA, 2009; 83(4): 587-597. doi: 10.1134/S003602440904013X

11. Mollaamin F. Structural and Functional Characterization of Medicinal Plants as Selective Antibodies towards Therapy of COVID-19 Symptoms. Antibodies. 2024; 13(2): 38. doi: 10.3390/antib13020038

12. Zeng F, Huang Y, Guo Y, et al. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. International Journal of Infectious Diseases. 2020; 96: 467-474. doi: 10.1016/j.ijid.2020.05.055

13. Mollaamin F. PHYSICOCHEMICAL INVESTIGATION OF ANTI-COVID19 DRUGS USING SEVERAL MEDICINAL PLANTS. Journal of the Chilean Chemical Society. 2022; 67(2): 5537-5546. doi: 10.4067/s0717-97072022000205537

14. Jamal QMS. Antiviral Potential of Plants against COVID-19 during Outbreaks—An Update. International Journal of Molecular Sciences. 2022; 23(21): 13564. doi: 10.3390/ijms232113564

15. Remali J, Aizat WM. A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection. Frontiers in Pharmacology. 2021; 11. doi: 10.3389/fphar.2020.589044

16. Mollaamin F, Shahriari S, Monajjemi M. MONKEYPOX DISEASE TREATMENT BY TECOVIRIMAT ADSORBED ONTO SINGLE-WALLED CARBON NANOTUBE THROUGH DRUG DELIVERY METHOD. Journal of the Chilean Chemical Society. 2023; 68(1): 5796-5801. doi: 10.4067/s0717-97072023000105796

17. Capell T, Twyman RM, Armario-Najera V, et al. Potential Applications of Plant Biotechnology against SARS-CoV-2. Trends in Plant Science. 2020; 25(7): 635-643. doi: 10.1016/j.tplants.2020.04.009

18. Mollaamin F, Monajjemi M. B5N10 Nanocarrier Functionalized with Al, C, Si Atoms: A Drug Delivery Method for Infectious Disease Remedy. OBM Genetics. 2024; 08(01): 1-19. doi: 10.21926/obm.genet.2401214

19. Murugesan S, Ragavendran C, Ali A, et al. Screening and Druggability Analysis of Marine Active Metabolites against SARS-CoV-2: An Integrative Computational Approach. International Journal of Translational Medicine. 2022; 3(1): 27-41. doi: 10.3390/ijtm3010003

20. Castro-Acosta ML, Lenihan-Geels GN, Corpe CP, et al. Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects. Proceedings of the Nutrition Society. 2016; 75(3): 342-355. doi: 10.1017/s0029665116000240

21. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, et al. Berries: Improving Human Health and Healthy Aging, and Promoting Quality Life—A Review. Plant Foods for Human Nutrition. 2010; 65(3): 299-308. doi: 10.1007/s11130-010-0177-1

22. Mollaamin F. Monajjemi M. Drug delivery using doping of boron nitride nanosensor towards releasing chloroquine drug in the cells: A promising method for overcoming viral disease. Rev. Colomb. Cienc. Quím. Farm., 2024; 53(2): 430-454. https://doi.org/10.15446/rcciquifa.v53n2.114450

23. Torres PHM, Sodero ACR, Jofily P, et al. Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences. 2019; 20(18): 4574. doi: 10.3390/ijms20184574

24. Das S, Sarmah S, Lyndem S, et al. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics. Published online May 13, 2020: 1-11. doi: 10.1080/07391102.2020.1763201

25. Monajjemi M, Sobhanmanesh A, Mollaamin F, Theoretical studies of solvent effects on binding of Sn (CH 3) 2(N-acetyl-L-cysteinate) with single-walled carbon nanotube.Fuller. Nanotub. Carbon Nanostructures. 201; 21(1): 47-63. doi: 10.1080/1536383X.2011.574325

26. Mpiana PT, Ngbolua K te N, Tshibangu DST, et al. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chemical Physics Letters. 2020; 754: 137751. doi: 10.1016/j.cplett.2020.137751

27. Khalili Hadad B, Mollaamin F, Monajjemi M. Biophysical chemistry of macrocycles for drug delivery: a theoretical study. Russian Chemical Bulletin. 2011; 60(2): 238-241. doi: 10.1007/s11172-011-0039-5

28. Mollaamin F, Monajjemi M. THERMODYNAMIC RESEARCH ON THE INHIBITORS OF CORONAVIRUS THROUGH DRUG DELIVERY METHOD. Journal of the Chilean Chemical Society. 2021; 66(2): 5195-5205. doi: 10.4067/s0717-97072021000205195

29. Mazzini S, Musso L, Dallavalle S, et al. Putative SARS-CoV-2 Mpro Inhibitors from an In-House Library of Natural and Nature-Inspired Products: A Virtual Screening and Molecular Docking Study. Molecules. 2020; 25(16): 3745. doi: 10.3390/molecules25163745

30. Mollaamin F, Monajjemi M. MOLECULAR DRUG DISCOVERY OF POTENTIAL INHIBITOR OF COVID–19 USING SEVERAL MEDICINAL PLANT INGREDIENTS: A PROMISING THERAPY FOR VIRAL DISEASE. Revista de la Facultad de Ciencias. 2024; 13(1): 141-158. doi: 10.15446/rev.fac.cienc.v13n1.111288

31. Alfaro M, Alfaro I, Angel C. Identification of potential inhibitors of SARS-CoV-2 papain-like protease from tropane alkaloids from Schizanthus porrigens: A molecular docking study. Chemical Physics Letters. 2020; 761: 138068. doi: 10.1016/j.cplett.2020.138068

32. Mollaamin F. Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy. Computation. 2023; 11(4):84. doi: 10.3390/computation11040084

33. Olsson ME, Gustavsson KE, Andersson S, et al. Inhibition of Cancer Cell Proliferation in Vitro by Fruit and Berry Extracts and Correlations with Antioxidant Levels. Journal of Agricultural and Food Chemistry. 2004; 52(24): 7264-7271. doi: 10.1021/jf030479p

34. Mollaamin F, Monajjemi M. Application of DFT/TD-DFT Frameworks in the Drug Delivery Mechanism: Investigation of Chelated Bisphosphonate with Transition Metal Cations in Bone Treatment. Chemistry. 2023; 5(1):365-380. doi: 10.3390/chemistry5010027

35. Ghalandari B, Monajjemi M, Mollaamin F. Theoretical investigation of carbon nanotube binding to DNA in view of drug delivery. J Comput Theor Nanosci. 2011; 8(7): 1212-1219. doi:10.1166/jctn.2011.1801

36. Mollaamin F, Shahriari S, Monajjemi M, TREATING OMICRON BA.4 & BA.5 VIA HERBAL ANTIOXIDANT ASAFOETIDA: A DFT STUDY OF CARBON NANOCARRIER IN DRUG DELIVERY. J. Chil. Chem. Soc. 2023; 68(1): 5781–5786. doi: 10.4067/S0717-97072023000105781

37. Sarasia EM, Afsharnezhad S, Honarparvar B, et al. Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives. Physics and Chemistry of Liquids. 2011; 49(5): 561-571. doi: 10.1080/00319101003698992

38. Mollaamin F. Computational Methods in the Drug Delivery of Carbon Nanocarriers onto Several Compounds in Sarraceniaceae Medicinal Plant as Monkeypox Therapy. Computation. 2023; 11(4): 84. doi: 10.3390/computation11040084

39. Monajjemi M, Yamola H, Mollaamin F, Study of bio-nano interaction outlook of amino acids on single-walled carbon nanotubes. Fuller. Nanotub. Carbon Nanostructures. 2014; 22(6): 595-603. doi: 10.1080/1536383X.2012.702163

40. Schreiber HD, Swink AM, Godsey TD. The chemical mechanism for Al3+ complexing with delphinidin: A model for the bluing of hydrangea sepals. Journal of Inorganic Biochemistry. 2010; 104(7): 732-739. doi: 10.1016/j.jinorgbio.2010.03.006

41. Schreiber HD, Swink AM, Godsey TD. The chemical mechanism for Al3+ complexing with delphinidin: A model for the bluing of hydrangea sepals. Journal of Inorganic Biochemistry. 2010; 104(7): 732-739. doi: 10.1016/j.jinorgbio.2010.03.006

42. Mollaamin F. Shahriari S. Monajjemi M. Therapeutic role of medicinal plants against viral diseases focusing on COVID-19: Application of computational chemistry towards drug design. Rev. Colomb. Cienc. Quím. Farm., 2024; 53(1): 19-43. https://doi.org/10.15446/rcciquifa.v53n1.112978

43. Chitrala KN, Yang X, Busbee B, et al. Computational prediction and in vitro validation of VEGFR1 as a novel protein target for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-43232-4

44. Mollaamin F, Shahriari S, Monajjemi M. DRUG DESIGN OF MEDICINAL PLANTS AS A TREATMENT OF OMICRON VARIANT (COVID-19 VARIANT B.1.1.529). Journal of the Chilean Chemical Society. 2022; 67(3): 5562-5570. doi: 10.4067/s0717-97072022000305562

45. Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

46. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics. 1993; 98(7): 5648-5652. doi: 10.1063/1.464913

47. Perdew JP, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics. 1996; 105(22): 9982-9985. doi: 10.1063/1.472933

48. Mollaamin F, Monajjemi M, Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Molecular Simulation, 2023; 49(4): 365-376. doi: 10.1080/08927022.2022.2159996

49. White WM, ed. Encyclopedia of Geochemistry. Springer International Publishing; 2018. doi: 10.1007/978-3-319-39312-4

50. Marko D, Puppel N, Tjaden Z, et al. The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation. Molecular Nutrition & Food Research. 2004; 48(4): 318-325. doi: 10.1002/mnfr.200400034

51. Katsube N, Iwashita K, Tsushida T, et al. Induction of Apoptosis in Cancer Cells by Bilberry (Vaccinium myrtillus) and the Anthocyanins. Journal of Agricultural and Food Chemistry. 2002; 51(1): 68-75. doi: 10.1021/jf025781x

52. Zafra‐Stone S, Yasmin T, Bagchi M, et al. Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition & Food Research. 2007; 51(6): 675-683. doi: 10.1002/mnfr.200700002

Published
2024-11-05
How to Cite
Mollaamin, F., & Monajjemi, M. (2024). Delivery of cations (Mg2+, Al3+, Ga3+, Sn2+, Cr3+, Fe3+) into the cells by anthocyanins through Physico-chemical assessment: A molecular simulation study. Molecular & Cellular Biomechanics, 21(2), 206. https://doi.org/10.62617/mcb.v21i2.206
Section
Article