Serum miRNA Detection-based Alzheimer’s disease prediction regression model

  • Shulian Liu College of Nursing and Health Care, Luoyang Polytechnic, Luoyang 471000, China
  • Yanhong Li College of Nursing, Zhengzhou Health Vocational College, Zhengzhou 450100, China
  • Yujing Zhang College of Nursing and Health Care, Luoyang Polytechnic, Luoyang 471000, China
  • Yaming Guo Geriatric Psychiatry, Henan Rongkang Hospital, Luoyang 471000, China
  • Jingliang Zhang Medical College, Zhengzhou Institute of Industrial Application Technology, Zhengzhou 451150, China
Keywords: serum miRNA detection; AD; cognitive status; disease prediction
Article ID: 536

Abstract

With the deepening of Alzheimer’s disease (AD) research, serum miRNA has attracted widespread attention as a potential biomarker. Traditional diagnostic methods for AD have certain limitations, such as reliance on clinical symptoms and neuroimaging examinations, which lack sensitivity (Sen) and specificity (Spe) for early diagnosis. Therefore, this article aimed to explore the expression levels of serum miRNA in AD patients and its clinical significance, to construct an AD prediction regression model based on serum miRNA detection. This article found no statistical differences in gender, underlying diseases, age, triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) between the control group (healthy individuals) and the AD group, but obvious distinctions were observed in Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Alzheimer’s Disease Assessment Scale-cognitive part (ADAS-cog), and Activities of Daily Living (ADL) scores. Further analysis revealed obvious distinctions in miR-31, miR-93, miR-124-3p, miR-143, miR-146a, and miR-218-5p between the two groups, with miR-124-3p showing the best diagnostic effect, followed by miR-218-5p. Based on these findings, this article constructed an AD prediction regression model, and the experimental results indicated that the model has high Sen, Spe, and accuracy (Acc) in the early diagnosis of AD, reducing the error rate of subsequent diagnoses and providing new ideas and methods for the early diagnosis of AD.

References

1. Jain M, Agarwal S, Rana A, Tiwari A, Patil N. miRNA as an Ultimate and Emerging Diagnostic Approach for the Detection of Alzheimer’s Disease. Microrna, 2023,12(3):189-204.

2. Rivera J, Gangwani L, Kumar S. Mitochondria Localized microRNAs: An Unexplored miRNA Niche in Alzheimer’s Disease and Aging. Cells, 2023,12(5):742.

3. Sun Z, Kwon JS, Ren Y, Chen S, Walker CK, Lu X, Cates K, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Modeling late-onset Alzheimer’s disease neuropathology via direct neuronal reprogramming. Science, 2024,385(6708):adl2992.

4. Yin Z, Herron S, Silveira S, Kleemann K, Gauthier C, Mallah D, Cheng Y, Margeta MA, Pitts KM, Barry JL, Subramanian A, Shorey H, Brandao W, Durao A, Delpech JC, Madore C, Jedrychowski M, Ajay AK, Murugaiyan G, Hersh SW, Ikezu S, Ikezu T, Butovsky O. Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease. Nat Neurosci, 2023,26(7):1196-1207.

5. Pereira RL, Oliveira D, Pêgo AP, Santos SD, Moreira FTC. Electrochemical miRNA-34a-based biosensor for the diagnosis of Alzheimer’s disease. Bioelectrochemistry, 2023,154:108553.

6. Sun X, Deng Y, Ge P, Peng Q, Soufiany I, Zhu L, Duan R. Diminazene Ameliorates Neuroinflammation by Suppression of Astrocytic miRNA-224-5p/NLRP3 Axis in Alzheimer’s Disease Model. J Inflamm Res, 2023,16:1639-1652.

7. Vijayan M, Reddy PH. Unveiling the Role of Novel miRNA PC-5P-12969 in Alleviating Alzheimer’s Disease. J Alzheimers Dis, 2024,98(4):1329-1348.

8. Nijakowski K, Owecki W, Jankowski J, Surdacka A. Salivary Biomarkers for Alzheimer’s Disease: A Systematic Review with Meta-Analysis. Int J Mol Sci, 2024,25(2):1168.

9. Awuson-David B, Williams AC, Wright B, Hill LJ, Di Pietro V. Common microRNA regulated pathways in Alzheimer’s and Parkinson’s disease. Front Neurosci, 2023,17:1228927.

10. Scoyni F, Giudice L, Väänänen MA, Downes N, Korhonen P, Choo XY, Välimäki NN, Mäkinen P, Korvenlaita N, Rozemuller AJ, de Vries HE, Polo J, Turunen TA, Ylä-Herttuala S, Hansen TB, Grubman A, Kaikkonen MU, Malm T. Alzheimer’s disease-induced phagocytic microglia express a specific profile of coding and non-coding RNAs. Alzheimers Dement, 2024,20(2):954-974.

11. Sun Z, Kwon JS, Ren Y, Chen S, Cates K, Lu X, Walker CK, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Endogenous recapitulation of Alzheimer’s disease neuropathology through human 3D direct neuronal reprogramming. bioRxiv [Preprint], 2023,25:2023.05.24.542155.

12. Wang L, Shui X, Diao Y, Chen D, Zhou Y, Lee TH. Potential Implications of miRNAs in the Pathogenesis, Diagnosis, and Therapeutics of Alzheimer’s Disease. Int J Mol Sci, 2023,24(22):16259.

13. La Rosa F, Agostini S, Piancone F, Marventano I, Hernis A, Fenoglio C, Galimberti D, Scarpini E, Saresella M, Clerici M. TREM2 Expression and Amyloid-Beta Phagocytosis in Alzheimer’s Disease. Int J Mol Sci, 2023,24(10):8626.

14. Rivera J, Sharma B, Torres MM, Kumar S. Factors affecting the GABAergic synapse function in Alzheimer’s disease: Focus on microRNAs. Ageing Res Rev, 2023,92:102123.

15. Pinto-Hernandez P, Castilla-Silgado J, Coto-Vilcapoma A, Fernández-Sanjurjo M, Fernández-García B, Tomás-Zapico C, Iglesias-Gutiérrez E. Modulation of microRNAs through Lifestyle Changes in Alzheimer’s Disease. Nutrients, 2023,15(17):3688.

16. Dave BP, Shah YB, Maheshwari KG, Mansuri KA, Prajapati BS, Postwala HI, Chorawala MR. Pathophysiological Aspects and Therapeutic Armamentarium of Alzheimer’s Disease: Recent Trends and Future Development. Cell Mol Neurobiol, 2023,43(8):3847-3884.

17. Israel LL, Sun T, Braubach O, Cox A, Shatalova ES, Rashid HM, Galstyan A, Grodzinski Z, Song XY, Chepurna O, Ljubimov VA, Chiechi A, Sharma S, Phebus C, Wang Y, Ljubimova JY, Black KL, Holler E. β-Amyloid targeting nanodrug for neuron-specific delivery of nucleic acids in Alzheimer’s disease mouse models. J Control Release, 2023,361:636-658.

18. Noor Eddin A, Hamsho K, Adi G, Al-Rimawi M, Alfuwais M, Abdul Rab S, Alkattan K, Yaqinuddin A. Cerebrospinal fluid microRNAs as potential biomarkers in Alzheimer’s disease. Front Aging Neurosci, 2023,15:1210191.

19. Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer’s Disease. Mol Neurobiol, 2023,60(10):5954-5974.

20. Seyedaghamiri F, Rajabi M, Mohaddes G. Targeting Novel microRNAs in Developing Novel Alzheimer’s Disease Treatments. Neurochem Res, 2023,48(1):26-38.

21. Chai YL, Strohm L, Zhu Y, Chia RSL, Chong JR, Suresh DD, Zhou LH, Too HP, Hilal S, Radivoyevitch T, Koo EH, Chen CP, Poplawski GHD. Extracellular Vesicle-Enriched miRNA-Biomarkers Show Improved Utility for Detecting Alzheimer’s Disease Dementia and Medial Temporal Atrophy. J Alzheimers Dis, 2024,99(4):1317-1331.

22. Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother, 2024,177:116899.

Published
2024-12-03
How to Cite
Liu, S., Li, Y., Zhang, Y., Guo, Y., & Zhang, J. (2024). Serum miRNA Detection-based Alzheimer’s disease prediction regression model. Molecular & Cellular Biomechanics, 21(3), 536. https://doi.org/10.62617/mcb536
Section
Article