A review of technoeconomic benefits of torrefaction pretreatment technology and application in torrefying sawdust

  • R. S. Bello Department of Agricultural & Bioenvironmental Engineering Technology, Federal College of Agriculture Ishiagu, Abakaliki 480001, Nigeria
  • A. O. Olorunnisola Department of Wood Products Engineering, University of Ibadan, Ibadan 200213, Nigeria
  • T. E. Omoniyi Department of Wood Products Engineering, University of Ibadan, Ibadan 200213, Nigeria
  • M. A. Onilude Department of Wood Products Engineering, University of Ibadan, Ibadan 200213, Nigeria
Keywords: technoeconomic; torrefaction; reactors; sawdust; pretreatment
Article ID: 104

Abstract

Economic analysis of the torrefaction process centers on the assessment of the economic feasibility of the production and utilization of torrefied biomass using developed models such as costs of biomass, electricity, labour, investment, transportation, etc. to evaluate the cost of biomass torrefaction. The increase in energy usage over the past century has raised concern over the energy insecurity and environmental unsustainability of current fossil fuel utilization; therefore, there is a need for energy diversification. An attractive alternative is biomass. However, the poor performance of raw biomass in energy generation further necessitates the development of refined technologies to enhance its performance, particularly at low temperatures between 200–300 ℃. This study therefore reviews the technoeconomic benefits of torrefaction technology and reactors and their application in the pretreatment of sawdust. An overview of torrefaction technology, torrefied product characteristics, economic analysis of torrefaction reactors, and torrefaction cost/ton were reviewed. From the review, torrefaction significantly improved the physical, combustion, and performance characteristics of torrefied products, with comparable durability and storability to raw biomass. Compared with other thermal pretreatment methods, torrefaction is an economical way of improving biomass properties.

References

1. Matali S, Rahman NA, Idris SS, et al. Lignocellulosic Biomass Solid Fuel Properties Enhancement via Torrefaction. Procedia Engineering. 2016; 148: 671-678. doi: 10.1016/j.proeng.2016.06.550

2. Nhuchhen DR. Studies on advanced means of biomass torrefaction. Available online: http://hdl.handle.net/10222/71402h (accessed on 22 December 2023).

3. United States EPA. Renewable Fuel Standard. Available online: http://www.epa.gov/otaq/fuels/renewablefuels/index.htm (accessed on 22 December 2023).

4. Kumar A, Kumar N, Baredar P, et al. A review on biomass energy resources, potential, conversion and policy in India. Renewable and Sustainable Energy Reviews. 2015; 45: 530-539. doi: 10.1016/j.rser.2015.02.007

5. Tanaka N. World energy outlook 2010. International Energy Agency; 2010.

6. Okot DK, Bilsborrow PE, Phan AN. Effects of operating parameters on maize COB briquette quality. Biomass and Bioenergy. 2018; 112: 61-72. doi: 10.1016/j.biombioe.2018.02.015

7. Simonyan KJ, Fasina O. Biomass resources and bioenergy potentials in Nigeria. African Journal of Agricultural Research. 2013; 8(40): 4975-4989.

8. Okoroigwe E, Li Z, Stuecken T, et al. Pyrolysis of Gmelina arborea Wood for Bio-oil/Bio-char Production: Physical and Chemical Characterisation of Products. Journal of Applied Sciences. 2012; 12(4): 369-374. doi: 10.3923/jas.2012.369.374

9. Charco N, Geer J, Rincon J, Romero SR. Technical, Economic, and Environmental Assessment of Alternative Uses of Biomass Feedstock in Humboldt County ENGR 492: Capstone Humboldt State University. Available online: https://redwoodenergy.org/wp-content/uploads/2020/07/Biomassters_FinalReport.pdf (accessed on 22 December 2023).

10. Proskurina S, Heinimö J, Schipfer F, et al. Biomass for industrial applications: The role of torrefaction. Renewable Energy. 2017; 111: 265-274. doi: 10.1016/j.renene.2017.04.015

11. Vaish S, Sharma NK, Kaur G. A review on various types of densification/briquetting technologies of biomass residues. IOP Conference Series: Materials Science and Engineering. 2022; 1228(1): 012019. doi: 10.1088/1757-899x/1228/1/012019

12. Bello RS, Olorunnisola AO, Omoniyi TE. Effect of residence time on characteristics of torrefied sawdust produced from Gmelina arborea (Roxb) Wood. Trends in Applied Sciences Research. 2022; 17(4): 168-179.

13. Brunerová A, Roubík H, Brožek M, et al. Potential of tropical fruit waste biomass for production of bio-briquette fuel: Using Indonesia as an example. Energies. 10(12): 2119.

14. Kpalo SY, Zainuddin MF, Manaf LA, et al. A Review of Technical and Economic Aspects of Biomass Briquetting. Sustainability. 2020; 12(11): 4609. doi: 10.3390/su12114609

15. Bello RS, Olorunnisola AO, Omoniyi TE, Onilude MA. Combustion Characteristics of Briquettes Produced from Three Binders and Torrefied Gmelina arborea (Robx.) Sawdust. Trends in Applied Sciences Research. 2023; 18(1): 71-93.

16. Kaniapan S, Pasupuleti J, Patma Nesan K, et al. A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment. International Journal of Environmental Research and Public Health. 2022; 19(6): 3427. doi: 10.3390/ijerph19063427

17. Kumar SR, Sarkar A, Chakraborty JP. Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters. Renewable Energy. 2019; 138: 805-819.

18. Rosillo‐Calle F. A review of biomass energy—shortcomings and concerns. Journal of Chemical Technology & Biotechnology. 2016; 91(7): 1933-1945. doi: 10.1002/jctb.4918

19. Akhtar N, Gupta K, Goyal D, et al. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environmental Progress & Sustainable Energy. 2015; 35(2): 489-511. doi: 10.1002/ep.12257

20. Singh S, Cheng G, Sathitsuksanoh N, et al. Comparison of Different Biomass Pretreatment Techniques and Their Impact on Chemistry and Structure. Frontiers in Energy Research. 2015; 2. doi: 10.3389/fenrg.2014.00062

21. Mohapatra S, Mishra C, Behera SS, et al. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—A review. Renewable and Sustainable Energy Reviews. 2017; 78: 1007-1032. doi: 10.1016/j.rser.2017.05.026

22. Shah A, Darr MJ, Medic D, et al. Techno‐economic analysis of a production‐scale torrefaction system for cellulosic biomass upgrading. Biofuels, Bioproducts and Biorefining. 2011; 6(1): 45-57. doi: 10.1002/bbb.336

23. Bensah EC, Mensah M. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations. International Journal of Chemical Engineering. 2013; 2013: 1-21. doi: 10.1155/2013/719607

24. Wagner AO, Schwarzenauer T, Illmer P. Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture. Journal of Environmental Management. 2013; 129: 357-360. doi: 10.1016/j.jenvman.2013.07.030

25. Adnan MA, Mohd Fuad MAH, Hasan MF. Oxidative torrefaction for pulverized palm biomass using air. Jurnal Teknologi. 2017; 79(7-4). doi: 10.11113/jt.v79.12259

26. Basu P. Biomass Gasification, Pyrolysis and Torrefaction: Practical design and theory. Academic Press; 2018.

27. Maguyon-Detras MC, Migo MVP, Van Hung N, Gummert M. Thermochemical conversion of rice straw. In: Gummert M, Hung N, Chivenge P, Douthwaite B (editors). Sustainable Rice Straw Management. Springer; 2020.

28. Junsatien W, Soponpongpipat N, Phetsong S. Torrefaction reactors. Journal of Science and Technology Mahasarakham University. 2013; 32(1): 84-91. Available online: https://www.thaiscience.info/journals/Article/JSMU/10887828.pdf (accessed on 22 December 2023).

29. Ciolkosz D, Wallace R. A review of torrefaction for bioenergy feedstock production. Biofuels, Bioproducts and Biorefining. 2011; 5(3): 317-329. doi: 10.1002/bbb.275

30. International Energy Agency. World Energy Outlook 2009. International Energy Agency; 2009.

31. Bridgeman TG, Jones JM, Williams A, et al. An investigation of the grindability of two torrefied energy crops. Fuel. 2010; 89(12): 3911-3918. doi: 10.1016/j.fuel.2010.06.043

32. Australian Meat Processor Corporation. Review & Cost Benefit Analysis of Torrefaction Technology for Processing. AMPC; 2015.

33. Szufa S, Adrian Ł, Piersa P, et al. Torrefaction process of millet and cane using batch reactor. In: Wróbel M, Jewiarz M, Szlęk A. (editors). Renewable Energy Sources: Engineering, Technology, Innovation, Springer; 2020. pp. 371-379. doi: 10.1007/978-3-030-13888-2_37

34. Bergman PCA, et al. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations. ECN; 2005.

35. Preradovic M, Papuga S, Kolundžija A. Torrefaction: Process Review. Periodica Polytechnica Chemical Engineering. 2023; 67(1): 49-61. doi: 10.3311/ppch.20636

36. Ramos-Carmona S, Pérez JF, Pelaez-Samaniego MR, et al. Effect of torrefaction temperature on properties of Patula pine. Maderas Ciencia y Tecnología. 2017. doi: 10.4067/s0718-221x2017005000004

37. Acharya B, Dutta A. Fuel property enhancement of lignocellulosic and nonlignocellulosic biomass through torrefaction. Biomass Conversion and Biorefinery. 2015; 6(2): 139-149. doi: 10.1007/s13399-015-0170-x

38. Bridgeman TG, Jones JM, Shield I, Williams PT. Torrefaction of reed canary grass, wheat straw and willow to enhance fuel qualities and combustion properties. Fuel. 2011; 87(6): 844–856.

39. Tumuluru JS, Ghiasi B, Soelberg NR, et al. Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Frontiers in Energy Research. 2021; 9. doi: 10.3389/fenrg.2021.728140

40. Basu P, Sadhukhan AK, Gupta P, et al. An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresource Technology. 2014; 159: 215-222. doi: 10.1016/j.biortech.2014.02.105

41. Chew JJ, Doshi V. Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renewable and Sustainable Energy Reviews. 2011; 15(8): 4212-4222. doi: 10.1016/j.rser.2011.09.017

42. Lu KM, Lee WJ, Chen WH, et al. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresource Technology. 2012; 123: 98-105. doi: 10.1016/j.biortech.2012.07.096

43. Zanzi R, Ferro DT, Torres A, et al. Biomass torrefaction, In: Proceedings of the 6th Asia-Pacific International Symposium on Combustion and Energy Utilization; 20–22 May 2002; Kuala Lumpur, Malaysia.

44. Tumuluru JS, Sokhansanj S, Wright CT. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development (No. INL/EXT-10-19569). Idaho National Lab; 2010.

45. Beckman J, Hertel T, Taheripour F, et al. Structural change in the biofuels era. European Review of Agricultural Economics. 2011; 39(1): 137-156. doi: 10.1093/erae/jbr041

46. Bergman PCA, Kiel JHA. Torrefaction for biomass upgrading. Available online: http://www.energy.ca.gov/2009_energypolicy/documents/2009-0421_workshop/comments/Torrefaction_for_Biomass_Upgrading_TN-51257.pdf (accessed on 22 December 2023).

47. Basu P. Torrefaction: Biomass gasification, pyrolysis, and torrefaction–practical design and theory, 3rd ed. Academic Press; 2018b.

48. Nunes LJR, Matias JCO, Catalão JPS. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renewable and Sustainable Energy Reviews. 2014; 40: 153-160. doi: 10.1016/j.rser.2014.07.181

49. Tumuluru JS, et al. A review on biomass torrefaction process and product properties, in symposium on thermochemical conversion. Oklahoma State University; 2011a.

50. Chen WH, Lu KM, Liu SH, et al. Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities. Bioresource Technology. 2013; 146: 152-160. doi: 10.1016/j.biortech.2013.07.064

51. Chen WH, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews. 2015; 44: 847-866. doi: 10.1016/j.rser.2014.12.039

52. Lange JP. Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels Bioprod. Biorefining. 2007; 1(1): 39-48.

53. Brue JD. Development of Self Selection Torrefaction System [Master’s thesis]. Iowa State University; 2012.

54. Lal P, Alavalapati JRR, Marinescu M, et al. Developing Sustainability Indicators for Woody Biomass Harvesting in the United States. Journal of Sustainable Forestry. 2011; 30(8): 736-755. doi: 10.1080/10549811.2011.571581

55. Chen WH, Kuo PC. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy. 2010; 35(6): 2580-2586. doi: 10.1016/j.energy.2010.02.054

56. Kuo PC, Wu W, Chen WH. Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel. 2014; 117: 1231-1241. doi: 10.1016/j.fuel.2013.07.125

57. Lynam JG, Coronella CJ, Yan W, et al. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology. 2011; 102(10): 6192-6199. doi: 10.1016/j.biortech.2011.02.035

58. Bach QV, Tran KQ, Skreiberg Ø, et al. Effects of wet torrefaction on pyrolysis of woody biomass fuels. Energy. 2015; 88: 443-456. doi: 10.1016/j.energy.2015.05.062

59. Balat M, Balat H, Öz C. Progress in bioethanol processing. Progress in Energy and Combustion Science. 2008; 34(5): 551-573. doi: 10.1016/j.pecs.2007.11.001

60. Chen WH, Lin BJ, Lin YY, et al. Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science. 2021; 82: 100887. doi: 10.1016/j.pecs.2020.100887

61. Van Essendelft DT, Zhou X, Kang BSJ. Grindability determination of torrefied biomass materials using the Hybrid Work Index. Fuel. 2013; 105: 103-111. doi: 10.1016/j.fuel.2012.06.008

62. Adeleke AA, Odusote JK, Paswan D, et al. Influence of torrefaction on lignocellulosic woody biomass of Nigerian origin. Journal of Chemical Technology and Metallurgy. 2019; 54: 274-285.

63. Fisher EM, Dupont C, Darvell LI, et al. Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresource Technology. 2012; 119: 157-165. doi: 10.1016/j.biortech.2012.05.109

64. Hilten RN, Speir RA, Kastner JR, et al. Effect of Torrefaction on Bio-oil Upgrading over HZSM-5. Part 1: Product Yield, Product Quality, and Catalyst Effectiveness for Benzene, Toluene, Ethylbenzene, and Xylene Production. Energy & Fuels. 2013; 27(2): 830-843. doi: 10.1021/ef301694x

65. Huang YF, Chen WR, Chiueh PT, et al. Microwave torrefaction of rice straw and pennisetum. Bioresource Technology. 2012; 123: 1-7. doi: 10.1016/j.biortech.2012.08.006

66. Kim YH, Lee SM, Lee HW, et al. Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera). Bioresource Technology. 2012; 116: 120-125. doi: 10.1016/j.biortech.2012.04.033

67. Phanphanich M, Mani S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology. 2011; 102(2): 1246-1253. doi: 10.1016/j.biortech.2010.08.028

68. Medic D, Darr M, Shah A, et al. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel. 2012; 91(I).

69. Tumuluru JS, Wright CT, Hess JR, et al. Erratum: A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining. 2011b; 5(6): 720-720. doi: 10.1002/bbb.348

70. Nhuchhen DR, Basu P. Experimental Investigation of Mildly Pressurized Torrefaction in Air and Nitrogen. Energy & Fuels. 2014; 28(5): 3110-3121. doi: 10.1021/ef4022202

71. Dhungana A, Basu P, Dutta A. Effects of Reactor Design on the Torrefaction of Biomass. Journal of Energy Resources Technology. 2012; 134(4). doi: 10.1115/1.4007484

72. Eseyin AE, Steele PH, Pittman Jr. CU. Current Trends in the Production and Applications of Torrefied Wood/Biomass - A Review. BioResources. 2015; 10(4). doi: 10.15376/biores.10.4.8812-8858

73. Clausen LR. Integrated torrefaction vs. external torrefaction—A thermodynamic analysis for the case of a thermochemical biorefinery. Energy. 2014; 77: 597-607. doi: 10.1016/j.energy.2014.09.042

74. Agar D, Wihersaari M. Bio-coal, torrefied lignocellulosic resources—Key properties for its use in co-firing with fossil coal—Their status. Biomass and Bioenergy. 2012; 44: 107-111. doi: 10.1016/j.biombioe.2012.05.004

75. Jones JM, Bridgeman TG, Darvell LI, et al. Combustion properties of torrefied willow compared with bituminous coals. Fuel Processing Technology. 2012; 101: 1-9. doi: 10.1016/j.fuproc.2012.03.010

76. Tumuluru J, Boardman R, Wright C, et al. Some Chemical Compositional Changes in Miscanthus and White Oak Sawdust Samples during Torrefaction. Energies. 2012; 5(10): 3928-3947. doi: 10.3390/en5103928

77. Ghiasi B. Steam Assisted Pelletization and Torrefaction of Lignocellulosic Biomass [PhD thesis]. University of British Columbia; 2020.

78. Ribeiro AP, Rode M. Spatialized potential for biomass energy production in Brazil: an overview. Brazilian Journal of Science and Technology. 2016; 3(1). doi: 10.1186/s40552-016-0037-0

79. Mamvura TA, Danha G. Biomass torrefaction as an emerging technology to aid in energy production. Heliyon. 2020; 6(3): e03531. doi: 10.1016/j.heliyon.2020.e03531

80. Manouchehrinejad M, Mani S. Process simulation of an integrated biomass torrefaction and pelletization (iBTP) plant to produce solid biofuels. Energy Conversion and Management: X. 2019; 1: 100008. doi: 10.1016/j.ecmx.2019.100008

81. Stępień P, Pulka J, Białowiec A. Organic Waste Torrefaction—A Review: Reactor Systems, and the Biochar Properties. Pyrolysis. doi: 10.5772/67644

82. Batidzirai B, Mignot APR, Schakel WB, et al. Biomass torrefaction technology: Techno-economic status and future prospects. Energy. 2013; 62: 196-214. doi: 10.1016/j.energy.2013.09.035

83. Das BK, Kalita P, Chakrabortty M. Integrated Biorefinery for Food, Feed, and Platform Chemicals. Platform Chemical Biorefinery. pp. 393-416. doi: 10.1016/b978-0-12-802980-0.00021-3

84. Ren S, Lei H, Wang L, et al. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresource Technology. 2013; 135: 659-664. doi: 10.1016/j.biortech.2012.06.091

85. Tumuluru JS, Kremer T, Wright CT, Boardman RD. Proximate and Ultimate Compositional Changes in Corn Stover During Torrefaction Using Thermogravimetric Analyzer and Microwaves. ASABE Annual International Meeting; 2012.

86. Sarkar M, Kumar A, Tumuluru JS, et al. Gasification performance of switchgrass pretreated with torrefaction and densification. Applied Energy. 2014; 127: 194-201. doi: 10.1016/j.apenergy.2014.04.027

87. Jukola P, Huttunen M. CFD modelling of torrefied biomass or bio-oil co-firing with coal in a pulverized coal fired furnace, VTT Research Report VTT-R-00526-13. Available online: http://www.ffrc.fi/FlameDays_2013/Papers/Jukola1.pdf (accessed on 22 December 2023).

88. Pahla G, Mamvura TA, Ntuli F, et al. Energy densification of animal waste lignocellulose biomass and raw biomass. South African Journal of Chemical Engineering. 2017; 24: 168-175. doi: 10.1016/j.sajce.2017.10.004

89. Mamvura TA, Pahla G, Muzenda E. Torrefaction of waste biomass for application in energy production in South Africa. South African Journal of Chemical Engineering. 2018; 25: 1-12. doi: 10.1016/j.sajce.2017.11.003

90. Fajobi MO, Lasode OA, Adeleke AA, et al. Investigation of physicochemical characteristics of selected lignocellulose biomass. Scientific Reports. 2022; 12(1): 1-4.

91. Chen Q, Zhou J, Liu B, et al. Influence of torrefaction pretreatment on biomass gasification technology. Chinese Science Bulletin. 2011; 56(14): 1449-1456. doi: 10.1007/s11434-010-4292-z

92. Pelaez-Samaniego MR, Yadama V, Garcia-Perez M, et al. Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. Journal of Analytical and Applied Pyrolysis. 2014; 109: 222-233. doi: 10.1016/j.jaap.2014.06.008

93. Hill SJ, Grigsby WJ, Hall PW. Chemical and cellulose crystallite changes in Pinus radiata during torrefaction. Biomass and Bioenergy. 2013; 56: 92-98. doi: 10.1016/j.biombioe.2013.04.025

94. Odusote JK, Adeleke AA, Lasode OA, et al. Thermal and compositional properties of treated Tectona grandis. Biomass Conversion and Biorefinery. 2019; 9(3): 511-519. doi: 10.1007/s13399-019-00398-1

95. Li J. Volumetric Combustion of Torrefied Biomass for Large Percentage Biomass Co-Firing up to 100% Fuel Switch [PhD thesis]. KTH Royal Institute of Technology; 2014.

96. Topell. Torrefied biomass: Advantages over untreated biomass. Available online: http://www.topellenergy.com/product/torrefiedbiomass/ (accessed on 11 June 2012).

97. Paulrud S, Mattsson JE, Nillson C. Particle and handling characteristics of wood fuel powder: effects of different mills. Fuel Processing Technology. 2002; 76: 23-39.

98. Mohamed AR, Nordin NN, Salleh NHM. Chemical properties of torrefied and raw sawdust. Journal of Advanced Research. 2019; 6(1): 7-14.

99. Adegoke OA, Fuwape JA, Fabiyi JS. Combustion Properties of Some Tropical Wood Species and Their Pyrolytic Products Chatacterisation, Energy and Power. 2014; 4(3): 54-57. doi: 10.5923/j.ep.20140403.02

100. Ghani WAWAK, Alias AB, Da-Silva G, Alias AB. Physico-Chemical Characterizations of Sawdust-Derived Bio char as Potential Solid Fuels. Malaysian Journal of Analytical Sciences. 2014; 18.

101. Lasode OA, Balogun AO, McDonald AG. Torrefaction of some Nigerian lignocellulosic resources and decomposition kinetics. Journal of Analytical and Applied Pyrolysis. 2014; 109: 47-55. doi: 10.1016/j.jaap.2014.07.014

102. Arteaga-Pérez LE, Segura C, Espinoza D, et al. Torrefaction of Pinus radiata and Eucalyptus globulus: A combined experimental and modeling approach to process synthesis. Energy for Sustainable Development. 2015; 29: 13-23. doi: 10.1016/j.esd.2015.08.004

103. Pimchuai A, Dutta A, Basu P. Torrefaction of agriculture residue to enhance combustible properties. Energy and Fuels. 2010; 24(9): 4638-4645. doi: 10.1021/ef901168f

Published
2024-04-12
How to Cite
Bello, R. S., Olorunnisola, A. O., Omoniyi, T. E., & Onilude, M. A. (2024). A review of technoeconomic benefits of torrefaction pretreatment technology and application in torrefying sawdust . Sustainable Economies, 2(2), 104. https://doi.org/10.62617/se.v2i2.104
Section
Review