Vermicomposting of food waste: A step toward circular bioeconomy

  • Basundhara Lenka School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be University, Bhubaneswar 751024, Odisha, India
Keywords: circular bioeconomy; earthworm; food waste; sustainable agriculture; vermicompost
Article ID: 2021

Abstract

The rapid expansion of the population, urbanization, industrial activities, and the intensification of agriculture and food production have significantly increased food waste generation in recent years. Vermicomposting has the potential to transform food waste into nutrient-rich organic fertilizer, making it a highly promising method for biological waste treatment. This review furnishes an in-depth review of the key patterns and mechanisms involved in food waste decomposition, nutrient recovery, and pollutant detoxification through vermicomposting, approaching a circular bioeconomy. The synergistic interaction between earthworms and microorganisms facilitates the breakdown and transformation of pollutants in the substrate, enriches nutrients, and underscores the crucial role of the earthworm gut in the process. Vermicomposting offers numerous benefits; however, several constraints limit its effectiveness and widespread adoption in agriculture. To promote its development, efforts should focus on advancing technology, increasing governmental awareness and policy support, and establishing standardized guidelines for implementation. Vermicompost plays a vital role in the circular bioeconomy, with applications in agricultural sustainability, waste management, pollutant remediation, biogas generation, and animal feed production.

References

1. Chaudhary S, Mishra S. Assessment on variations in physico-chemical characteristics at different maturity phages of organic kitchen waste composting at Lucknow City U.P. (India). Journal of Pharmacognosy and Phytochemistry. 2018; 7(5): 2943-2947.

2. FAO. Global food losses and food waste. FAO; 2011.

3. Kamar Zaman AM, Yaacob JS. Exploring the potential of vermicompost as a sustainable strategy in circular economy: improving plants’ bioactive properties and boosting agricultural yield and quality. Environmental Science and Pollution Research. 2022; 29(9): 12948-12964. doi: 10.1007/s11356-021-18006-z

4. Raza ST, Wu J, Rene ER, et al. Reuse of agricultural wastes, manure, and biochar as an organic amendment: A review on its implications for vermicomposting technology. Journal of Cleaner Production. 2022; 360: 132200. doi: 10.1016/j.jclepro.2022.132200

5. Tukker A, Jansen B. Environmental Impacts of Products: A Detailed Review of Studies. Journal of Industrial Ecology. 2006; 10(3): 159-182. doi: 10.1162/jiec.2006.10.3.159

6. Wang F, Zhang Y, Su Y, et al. Pollutant control and nutrient recovery of organic solid waste by earthworms: Mechanism and agricultural benefits of vermicomposting. Journal of Environmental Chemical Engineering. 2024; 12(3): 112610. doi: 10.1016/j.jece.2024.112610

7. Hajam YA, Kumar R, Kumar A. Environmental waste management strategies and vermi transformation for sustainable development. Environmental Challenges. 2023; 13: 100747. doi: 10.1016/j.envc.2023.100747

8. Enebe MC, Erasmus M. Vermicomposting technology - A perspective on vermicompost production technologies, limitations and prospects. Journal of Environmental Management. 2023; 345: 118585. doi: 10.1016/j.jenvman.2023.118585

9. Zago VCP, Barros RT de V. Urban organic solid waste management in Brazil: from legal framework to reality (Portuguese). Engenharia Sanitaria e Ambiental. 2019; 24(2): 219-228. doi: 10.1590/s1413-41522019181376

10. Moraga G, Huysveld S, Mathieux F, et al. Circular economy indicators: What do they measure? Resources, Conservation and Recycling. 2019; 146: 452-461. doi: 10.1016/j.resconrec.2019.03.045

11. Abad-Segura E, Fuente AB de la, González-Zamar MD, et al. Effects of Circular Economy Policies on the Environment and Sustainable Growth: Worldwide Research. Sustainability. 2020; 12(14): 5792. doi: 10.3390/su12145792

12. Flanagan K, Clowes A, Lipinski B, et al. SDG Target 12.3 on food loss and waste: 2019 Progress report. An annual update on behalf of champions. 2018; 12: 1-28.

13. Waqas M, Nizami AS, Aburiazaiza AS, et al. Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia. Journal of Cleaner Production. 2018; 176: 426-438. doi: 10.1016/j.jclepro.2017.12.165

14. Dahiya S, Kumar AN, Shanthi Sravan J, et al. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology. 2018; 248: 2-12. doi: 10.1016/j.biortech.2017.07.176

15. Teigiserova DA, Hamelin L, Thomsen M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resources, Conservation and Recycling. 2019; 149: 413-426. doi: 10.1016/j.resconrec.2019.05.003

16. Teigiserova DA, Hamelin L, Thomsen M. Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of The Total Environment. 2020; 706: 136033. doi: 10.1016/j.scitotenv.2019.136033

17. Lucchetti MG, Paolotti L, Rocchi L, et al. The Role of Environmental Evaluation within Circular Economy: An Application of Life Cycle Assessment (LCA) Method in the Detergents Sector. Environmental and Climate Technologies. 2019; 23(2): 238-257. doi: 10.2478/rtuect-2019-0066

18. Donner M, Gohier R, de Vries H. A new circular business model typology for creating value from agro-waste. Science of The Total Environment. 2020; 716: 137065. doi: 10.1016/j.scitotenv.2020.137065

19. Sehnem S, Ndubisi NO, Preschlak D, et al. Circular economy in the wine chain production: maturity, challenges, and lessons from an emerging economy perspective. Production Planning & Control. 2020; 31(11-12): 1014-1034. doi: 10.1080/09537287.2019.1695914

20. Zhou X, Yang J, Xu S, et al. Rapid in-situ composting of household food waste. Process Safety and Environmental Protection. 2020; 141: 259-266. doi: 10.1016/j.psep.2020.05.039

21. Oliveira MM de, Lago A, Dal’ Magro GP. Food loss and waste in the context of the circular economy: a systematic review. Journal of Cleaner Production. 2021; 294: 126284. doi: 10.1016/j.jclepro.2021.126284

22. Salmenperä H, Pitkänen K, Kautto P, et al. Critical factors for enhancing the circular economy in waste management. Journal of Cleaner Production. 2021; 280: 124339. doi: 10.1016/j.jclepro.2020.124339

23. Graedel TE, Allwood J, Birat JP, et al. What do we know about metal recycling rates? Journal of Industrial Ecology. 2011; 15(3): 355-366. doi: 10.1111/j.1530-9290.2011.00342.x

24. Ardente F, Mathieux F. Identification and assessment of product’s measures to improve resource efficiency: the case-study of an Energy using Product. Journal of Cleaner Production. 2014; 83: 126-141. doi: 10.1016/j.jclepro.2014.07.058

25. Singh A, Karmegam N, Singh GS, et al. Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt. Environmental Geochemistry and Health. 2020; 42(6): 1617-1642. doi: 10.1007/s10653-019-00510-4

26. Sharma K, Garg VK. Vermicomposting: a green technology for organic waste management. In: Waste to Wealth. Springer Singapore; 2017.

27. Ali U, Sajid N, Khalid A, et al. A review on vermicomposting of organic wastes. Environmental Progress & Sustainable Energy. 2015; 34(4): 1050-1062. doi: 10.1002/ep.12100

28. Zafar S. What is Vermicomposting. EcoMENA; 2023.

29. Joshi R, Singh J, Vig AP. Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Reviews in Environmental Science and Bio/Technology. 2015; 14(1): 137-159. doi: 10.1007/s11157-014-9347-1

30. Sharma V, Maddirala S, Bhadra S, et al. Solid Waste Treatment Using Vermicomposting. Solid Waste Management. 2024; 2: 181-200.

31. Gajalakshmi S, Abbasi, SA. Earthworms and vermicomposting. Indian Journal of Biotechnology. 2004; 3: 486-494.

32. Gupta SK, Tewari A, Srivastava R, et al. Potential of Eisenia foetida for Sustainable and Efficient Vermicomposting of Fly Ash. Water, Air, and Soil Pollution. 2005; 163(1-4): 293-302. doi: 10.1007/s11270-005-0722-y

33. Zhou Y, Xiao R, Klammsteiner T, et al. Recent trends and advances in composting and vermicomposting technologies: A review. Bioresource Technology. 2022; 360: 127591. doi: 10.1016/j.biortech.2022.127591

34. Ansari AA, Ori L, Ramnarain YI. An Effective Organic Waste Recycling Through Vermicompost Technology for Soil Health Restoration. In: Soil Health Restoration and Management. Springer Singapore; 2020.

35. Rodríguez-Canché LG, Cardoso Vigueros L, Maldonado-Montiel T, et al. Pathogen reduction in septic tank sludge through vermicomposting using Eisenia fetida. Bioresource Technology. 2010; 101(10): 3548-3553. doi: 10.1016/j.biortech.2009.12.001

36. Arumugam K, Renganathan S, Babalola OO, et al. Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Management. 2018; 74: 185-193. doi: 10.1016/j.wasman.2017.11.009

37. Song X, Liu M, Wu D, et al. Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Management. 2014; 34(11): 1977-1983. doi: 10.1016/j.wasman.2014.07.013

38. Domínguez J, Aira M, Kolbe AR, et al. Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-46018-w

39. Kolbe AR, Aira M, Gómez-Brandón M, et al. Bacterial succession and functional diversity during vermicomposting of the white grape marc Vitis vinifera v. Albariño. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-43907-y

40. Lim SL, Lee LH, Wu TY. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production. 2016; 111: 262-278. doi: 10.1016/j.jclepro.2015.08.083

41. Majumdar D, Patel J, Bhatt N, et al. Emission of methane and carbon dioxide and earthworm survival during composting of pharmaceutical sludge and spent mycelia. Bioresource Technology. 2006; 97(4): 648-658. doi: 10.1016/j.biortech.2005.03.015

42. Chan YC, Sinha RK, Weijin Wang. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management & Research: The Journal for a Sustainable Circular Economy. 2011; 29(5): 540-548. doi: 10.1177/0734242x10375587

43. Walling E, Trémier A, Vaneeckhaute C. A review of mathematical models for composting. Waste Management. 2020; 113: 379-394. doi: 10.1016/j.wasman.2020.06.018

44. Ghorbani M, Sabour MR. Global trends and characteristics of vermicompost research over the past 24 years. Environmental Science and Pollution Research. 2021; 28(1): 94-102. doi: 10.1007/s11356-020-11119-x

45. Hanc A, Chadimova Z. Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresource Technology. 2014; 168: 240-244. doi: 10.1016/j.biortech.2014.02.031

46. García-Sánchez M, Taušnerová H, Hanč A, et al. Stabilization of different starting materials through vermicomposting in a continuous-feeding system: Changes in chemical and biological parameters. Waste Management. 2017; 62: 33-42. doi: 10.1016/j.wasman.2017.02.008

47. Solanki S, Mahore G. Low-cost Large Scale Vermicompost Unit. Journal of Physics: Conference Series. 2021; 2115(1): 012026. doi: 10.1088/1742-6596/2115/1/012026

48. Mago M, Yadav A, Gupta R, et al. Management of banana crop waste biomass using vermicomposting technology. Bioresource Technology. 2021; 326: 124742. doi: 10.1016/j.biortech.2021.124742

49. Santana NA, Jacques RJS, Antoniolli ZI, et al. Changes in the chemical and biological characteristics of grape marc vermicompost during a two-year production period. Applied Soil Ecology. 2020; 154: 103587. doi: 10.1016/j.apsoil.2020.103587

50. Zziwa A, Jjagwe J, Kizito S, et al. Nutrient recovery from pineapple waste through controlled batch and continuous vermicomposting systems. Journal of Environmental Management. 2021; 279: 111784. doi: 10.1016/j.jenvman.2020.111784

51. Hřebečková T, Wiesnerová L, Hanč A. Changes in layers of laboratory vermicomposting using spent mushroom substrate of Agaricus subrufescens P. Journal of Environmental Management. 2020; 276: 111340. doi: 10.1016/j.jenvman.2020.111340

52. Hussain N, Das S, Goswami L, et al. Intensification of vermitechnology for kitchen vegetable waste and paddy straw employing earthworm consortium: Assessment of maturity time, microbial community structure, and economic benefit. Journal of Cleaner Production. 2018; 182: 414-426. doi: 10.1016/j.jclepro.2018.01.241

53. Gong X, Li S, Carson MA, et al. Spent mushroom substrate and cattle manure amendments enhance the transformation of garden waste into vermicomposts using the earthworm Eisenia fetida. Journal of Environmental Management. 2019; 248: 109263. doi: 10.1016/j.jenvman.2019.109263

54. Soobhany N, Gunasee S, Rago YP, et al. Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity. Bioresource Technology. 2017; 236: 11-19. doi: 10.1016/j.biortech.2017.03.161

55. Pandit L, Sethi D, Pattanayak SK, et al. Bioconversion of lignocellulosic organic wastes into nutrient rich vermicompost by Eudrilus eugeniae. Bioresource Technology Reports. 2020; 12: 100580. doi: 10.1016/j.biteb.2020.100580

56. Broz AP, Verma PO, Appel C. Nitrogen Dynamics of Vermicompost Use in Sustainable Agriculture. Journal of Soil Science and Environmental Management. 2016; 7(11): 173-183. doi: 10.5897/jssem2016.0587

57. Yatoo AM, Ali MdN, Baba ZA, et al. Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agronomy for Sustainable Development. 2021; 41(1). doi: 10.1007/s13593-020-00657-w

58. Blouin M, Barrere J, Meyer N, et al. Vermicompost significantly affects plant growth. A meta-analysis. Agronomy for Sustainable Development. 2019; 39(4). doi: 10.1007/s13593-019-0579-x

59. Olle M. Vermicompost, its importance and benefit in agriculture. Journal of Agricultural Science. 2019; 2: 93-98. doi: 10.15159/JAS.19.19

60. Liu T, Kumar Awasthi M, Kumar Awasthi S, et al. Influence of fine coal gasification slag on greenhouse gases emission and volatile fatty acids during pig manure composting. Bioresource Technology. 2020; 316: 123915. doi: 10.1016/j.biortech.2020.123915

61. Ayilara M, Olanrewaju O, Babalola O, et al. Waste Management through Composting: Challenges and Potentials. Sustainability. 2020; 12(11): 4456. doi: 10.3390/su12114456

62. Lim SL, Wu TY, Lim PN, et al. The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture. 2015; 95(6): 1143-1156. doi: 10.1002/jsfa.6849

63. Soobhany N. Insight into the recovery of nutrients from organic solid waste through biochemical conversion processes for fertilizer production: A review. Journal of Cleaner Production. 2019; 241: 118413. doi: 10.1016/j.jclepro.2019.118413

64. Sharma K, Garg VK. Vermicomposting of Waste: A Zero-Waste Approach for Waste Management. In: Sustainable Resource Recovery and Zero Waste Approaches. Elsevier Science Ltd; 2019.

65. Chen G, Zheng Z, Yang S, et al. Experimental co-digestion of corn stalk and vermicompost to improve biogas production. Waste Management. 2010; 30(10): 1834-1840. doi: 10.1016/j.wasman.2010.03.014

66. Yadav A, Garg VK. Bioconversion of Food Industry Sludge into value-added product (vermicompost) using epigeic earthworm Eisenia fetida. World Review of Science, Technology and Sustainable Development. 2010; 7(3): 225. doi: 10.1504/wrstsd.2010.032526

67. Gurav MV, Pathade GR. Production of Vermicompost from template waste (Nirmalya): a case study. Universal Journal of Environmental Research & Technology. 2011; 1(2): 182-192.

68. Moledor S, Chalak A, Fabian M, et al. Socioeconomic Dynamics of Vermicomposting Systems in Lebanon. Journal of Agriculture, Food Systems, and Community Development. 2016; 6(4): 145-168. doi: 10.5304/jafscd.2016.064.007

69. Kavitha P. Vermicomposting: A Leading Feasible Entrepreneurship. In: Agricultural Microbiology Based Entrepreneurship. Springer Nature Singapore; 2023.

70. Swati A, Hait S. A Comprehensive Review of the Fate of Pathogens during Vermicomposting of Organic Wastes. Journal of Environmental Quality. 2018; 47(1): 16-29. doi: 10.2134/jeq2017.07.0265

Published
2025-06-13
How to Cite
Lenka, B. (2025). Vermicomposting of food waste: A step toward circular bioeconomy. Sustainable Economies, 3(2), 2021. https://doi.org/10.62617/se2021
Section
Article